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TDR Instrumentation – Historical Perspective

� 1990’s and early 2000’s: Tektronix 1502C cable tester 
(1.75 GHz bandwidth), CPU, 50 Ω coaxial cables, 
multiplexers…

◦ Calibration influenced by coaxial cable length and 
interconnects

◦ Extremely difficult to deploy in field

◦ Only for scientific research

� 2016 to present: Acclima TDR-315 sensors (~1 GHz 
bandwidth)

◦ Miniaturized TDR circuit
◦ SDI-12 interface; waveforms acquired via another 

communication protocol
◦ Solar gateway and nodes allow cloud access
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Why TDR?

� Reduced sensitivity to apparent (bulk) EC of the soil

� Measured travel time is highly linear with soil water 
content

� Captured waveforms contain patterns and 
features that reflect soil properties



TDR measurements – sources of imprecision/inaccuracy
� Errors 0.02 to 0.05 m3 m-3 (20 – 50% management range)
� Calibrations fail to consider interaction between mineral 

surfaces and water (bound water relaxation):
◦ Permittivity of bound water 10 – 60% of free water
◦ Attenuation of high frequency components biases 

graphical determination of travel time

� Small sampling volume of probe (~300 cm3)
� Sensitivity to bulk EC increases with increasing 2:1 clay 

content
� Temperature influences dielectric and dc losses and the 

amount of bound water

2.8 cm
90% sensing volume

Smectite
As = 800 m2 g-1

Kaolinite
As = 25 m2 g-1



� Interplay between temperature and bound water (Or and Wraith, 1999) and bulk electrical 
conductivity (ECa) (Schwartz et al., 2009ab) – Complex dielectric power law mixing model

Calibrations (loosely) based on theory
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Fitted Parameters:
As – surface area of soil
α – power law exponent

Advantages
� Improved RMSE
� Fitted surface area closely 

correlated with measured 
surface area (r = 0.989)

Disadvantages
� Not a closed form calculation 
� Travel time approximated from signal attenuation ≠ increases 

in graphically determined travel time
� Soil specific calibration is impractical for most field 

applications for irrigation management (large fields, spatially 
variable soil properties)

� Air & Mineral permittivities are real valued
� Free water & bound water permittivities are complex and frequency 

and temperature dependent



Can we use waveform features to apply soil specific calibrations?

� Big Dirta Project / Acclima, Inc.

� Generation of waveform dataset with the TDR-
315N

◦ Mixtures of sand, kaolinite, high surface area soil
(Pullman Bt) – range in specific surface areas

◦ Saturation with < 1 dS m-1 CaCl2

◦ Pressure extraction in chamber (to 100 kPa)

◦ Resaturation with progressively increasing EC
solutions

� Work in progress Pressure extraction in packed container



Can we use waveform features to apply soil specific calibrations?

� Identify waveform features  useful for soil specific calibration (machine learning approach)
� Sensors would “self-calibrate” in situ
� Collaborative work with Acclima, Inc.

Soil (25% Smectite)

Kaolinite

Frequency 
Response

� Frequency response of soils reflect bound water associated with surfaces (amount of 2:1 clay)

Attenuation
predicted
by complex 
permittivity 
model



Waveforms with similar travel times and ECa (~1 dS m-1)

Curvature
Influenced

by bound water

� Kaolinite - 70% clay (EPK, Edgar Minerals, FL); As = 52 m2 g-1
� Pullman Bt - 50% clay (25% smectite, 25% mica); As = 190 m2 g-1

Can we use waveform features to apply soil specific calibrations?



� Large uncertainties in infiltration/runoff and irrigation application efficiency
◦ Generates errors in estimated crop water use

� Use of event based method to estimate infiltration / net irrigation 

Using TDR to quantify net irrigation and infiltration

� Array of sensors near surface 
(detection of wetting front)
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Maize (Bushland, TX 2022)

� Integration permits evaluation of the net 
irrigation (24 mm for 3 arrays; 93% AE)
◦ Wetting front does not extend to lowest sensor
◦ Negligible drainage for short time period



IRT canopy temperatures as a proxy to scale 
measured crop ET
� Major limitation: Impractical & costly to deploy sufficient sensors 

to account for water content variability in large agricultural fields
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� ETc calculated using water balance and 
change in stored soil water with TDR

� Use of IRT crop canopy temperature to 
infer crop ET using the a scaled crop water 
stress index (CWSI)



� Improvement of downhole 
probes for deep soil water 
content sensing (problems: air 
gaps in installation; reduced 
sensitivity)

Challenges & Opportunities – soil water sensors 
for irrigation management

TDR down-hole prototype Acclima, Inc.

� Inferring water balance/crop water requirements with EM sensors under 
the spatial variability imposed by surface and subsurface drip irrigation 
and resulting root densities

� Field variability and upscaling measured water contents to management 
zones

� Scarce water resources -> irrigating to avoid crop water stress may not 
result in the greatest water productivity
◦ Fusion of crop models & soil water content measurements to improve forecasting of 

yield and profitability in response to irrigation

� Water content measurement accuracy is still a problem for all EM sensors 
in soils with significant 2:1 clays 

Soil water distribution

Subsurface drip lines
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