Session G2.2 EGU23-3399

Toward a realistic spatio-temporal description of GNSS station position time series

Kevin Gobron^{1,2}, Paul Rebischung^{1,3}, Julien Barnéoud^{1,3}, Kristel Chanard^{1,3}, Zuheir Altamimi^{1,3}

contact: gobron@ipgp.fr

¹Université Paris Cité, Institut de physique du globe de Paris, CNRS, IGN, Paris, France ²Centre National d'Etudes Spatiales, Paris, France ³ENSG-Géomatique, IGN, Marne-la-Vallée, France

Correlations in GNSS position time series

(Gravelle et al., 2023)

Temporal correlation (Zhang et al, 1997)

Well-described by a WN+FL model

Correlations in GNSS position time series

Spatial correlation (Wdowinski et al, 1997)

Each stochastic process could have specific spatial correlations (Niu et al, 2023)

Dataset

Nevada Geodetic Laboratory (NGL) dataset analysis

- Selection of **11 151 stations** with more than 1000 estimates and no apparent postseismic deformation.
- North, East, and Vertical coordinates (only the vertical is presented in detail here).
- Corrected for GFZ non-tidal loading model (NTAL+NTOL+HYDL+SLEL, Dill and Dobslaw, 2013).

Time series modelling strategy

- Automatic discontinuity detection (Gobron et al, 2021)
- Accounting for **multiple periodic signals** (annual, GPS draconitic year and their harmonics; fortnightly periods).
- Adjustment of a WN+FL stochastic model to each series.

All stations processed by NGL (geodesy.unr.edu, Blewitt et al., 2018)

Pairwise spatial covariance modelling – Amiri-Simkooei (2009)

Unknown factors estimated using the restricted maximum likelihood (computationally expensive) From these (co)variance factors, one can compute spatial correlation coefficients for each process, separately.

Estimated spatial correlations in vertical

White noise spatial correlations

Flicker noise spatial correlations

- Major differences between white noise and flicker noise, consistent with Niu et al. (2023)
- Three spatial correlation regimes (station-specific, short-scale, and large scale)
- Correlations tend to **small positive constants at very long distances** (global common mode due to errors in alignment in scale to ITRF?)

Estimated spatial correlations in vertical

White noise spatial correlations

Flicker noise spatial correlations

- Major differences between white noise and flicker noise, consistent with Niu et al. (2023)
- Three spatial correlation regimes (station-specific, short-scale, and large scale)
- Correlations tend to **small positive constants at very long distances** (global common mode due to errors in alignment in scale to ITRF?)

Insights into the sources of stochastic variations

White noise

Flicker noise

Spatial covariance models for each stochastic process

Difficulty: covariance functions must be **positive-definite**, and we work on the sphere.

- Short-scale spatial correlations modelled by a modified exponential function.
- Large-scale spatial correlations modelled by a modified Bessel function (Lantuéjoul et al., 2019).
- Constant correlation at large distances modelled by a constant function.

Impact on velocity uncertainties in vertical

Spatial correlation of the noise imply spatially correlated errors on velocity estimates

- Non-trivial propagation.
- Essentially controlled by the spatial correlation of the flicker noise.
- Negative correlations are possible, even if the spatial correlation of the flicker noise is strictly positive.
- Correlations between velocity estimates depend at lot on the **overlap between series**.

Impact on velocity uncertainties in horizontal

Horizontal spatial covariance model requires more precautions:

-> EGU23 presentation by P. Rebischung on Wednesday (15:15) – Session G1.5

- White noise and flicker noise processes have different spatial fingerprints.
- Spatio-temporal correlation regimes provide new insights into "noise" sources.
- They have significant (and counter-intuitive) influence on the spatial correlation of velocity errors.
- A realistic model for spatio-temporal correlations could have a major impact on many geodetic and geophysical applications, including the realisation of TRFs, and their uncertainty assessment.
- Unique to NGL solution? No: similar spatio-temporal correlations are observed in the TU-Graz repro3 solutions (not presented here).

Thank you!

References

- Zhang et al, (1997)
- Wdowinski et al, (1997)
- Amiri-Simkooei, (2009)
- Dill and Dobslaw, (2013)
- Blewitt et al., (2018)
- Lantuéjoul et al., (2019)
- Gobron et al., (2021)
- Gravelle et al., (2023)
- Niu et al., (2023)

- https://doi.org/10.1029/97JB01380
- https://doi.org/10.1029/97JB01378
- https://doi.org/10.1007/s00190-008-0251-8
- https://doi.org/10.1002/jgrb.50353
- https://doi.org/10.1029/2018EO104623
- <u>https://doi.org/10.1007/s11004-019-09799-4</u>
- https://doi.org/10.1029/2021JB022370
- https://doi.org/10.5194/essd-15-497-2023
- https://doi.org/10.1007/s00190-023-01703-7