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1 Introduction 3 Results

As changes in the environment are already noticeable and clouds are known
to significantly influence the earth’s energy budget and hydrological balance

3.1 Model Performance 3.3 Sample Application: Cloud Top Height

[1], deriving connected dynamics is today more important than ever [2]. That (CTH)
said, clouds can be characterized as one of the most important yet most
minor well-understood climate feedback [3]. This study aims to bring to- A 5 @ (0)
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between 60°in all directions (NSEW) [5]. For that purpose, a spatio-temporal S 300k M S 2 0
matching scheme is used to generate training samples. Those are fed into Fig. 2: Computed RMSE for the validation dataset on all altitudes between  Fig. 3: Vertical reconstruction of the diagonal radar track for observed (a) and s igg:ﬁ: 200M S _?jgi_\]
the network to reconstruct (1) the vertical distribution of volumetric radar data 2.4 and 24 km (Mean RMSE: 2.99 dBZ). predicted (b) samples (1) - (V). " ——————
along the pixel-based cloud column and (2) infer those cloud structures to . _r Altitude [km] Altitude [km]
the image extent (Fig. 1). The study is based on two sources: input data 3.2 Multiscale Predictions — Observed — Predicted — Predicted - Observed

from Eumetsat’s MSG SEVIRI geostationary satellite and ground truth from

CloudSat’s CloudProfilingRadar (CS CPR) (a) | (b) Fig. 5: Frequency distribution from the CS CPR and the model for the reflectivity in dBZ [(a), (b)]
| and the CTH using a threshold of -15 dBZ [(c), (d)] for May, 2016. Grey areas are cloudfree.
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Fig. 4: Prediction of three-dimensional cloud structures on the MSG SEVIRI AOI (01.05.2016, 12 UTC). Scene (a) shows a top-view on the maximum cloud Fig. 6: Comparison between the aggregated model CTH (a) and the CLAAS-VO03E1 CTO product

(b) for May, 2016, on the MSG SEVIRI AOI.

Fig. 1: Workflow scheme of the data processing and the modeling routine using a Res-UNet. . _ o , , _
column reflectivity per pixel. Zooming in the red square with an extent of 150 x 150 pixels (b) demonstrates the absence of subset boundaries.
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