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1 Introduction
As changes in the environment are already noticeable and clouds are known
to significantly influence the earth’s energy budget and hydrological balance
[1], deriving connected dynamics is today more important than ever [2]. That
said, clouds can be characterized as one of the most important yet most
minor well-understood climate feedback [3]. This study aims to bring to-
gether spatial information from different remote sensing sources needed
for a gain in knowledge [4] to improve the quality of information in data-
sparse regions and, finally, the further advance of climate science.

2 Methods
With the help of a Deep-Learning approach, a high-resolution 3-D cloud
tomography is inferred for the area of interest (AOI) comprising a domain
between 60° in all directions (NSEW) [5]. For that purpose, a spatio-temporal
matching scheme is used to generate training samples. Those are fed into
the network to reconstruct (1) the vertical distribution of volumetric radar data
along the pixel-based cloud column and (2) infer those cloud structures to
the image extent (Fig. 1). The study is based on two sources: input data
from Eumetsat’s MSG SEVIRI geostationary satellite and ground truth from
CloudSat’s CloudProfilingRadar (CS CPR).

Fig. 1: Workflow scheme of the data processing and the modeling routine using a Res-UNet.

3 Results

3.1 Model Performance

Fig. 2: Computed RMSE for the validation dataset on all altitudes between

2.4 and 24 km (Mean RMSE: 2.99 dBZ).

Fig. 3: Vertical reconstruction of the diagonal radar track for observed (a) and

predicted (b) samples (I) - (V).

3.2 Multiscale Predictions

Fig. 4: Prediction of three-dimensional cloud structures on the MSG SEVIRI AOI (01.05.2016, 12 UTC). Scene (a) shows a top-view on the maximum cloud

column reflectivity per pixel. Zooming in the red square with an extent of 150 x 150 pixels (b) demonstrates the absence of subset boundaries.

3.3 Sample Application: Cloud Top Height
(CTH)

Fig. 5: Frequency distribution from the CS CPR and the model for the reflectivity in dBZ [(a), (b)]

and the CTH using a threshold of -15 dBZ [(c), (d)] for May, 2016. Grey areas are cloudfree.

Fig. 6: Comparison between the aggregated model CTH (a) and the CLAAS-V003E1 CTO product

(b) for May, 2016, on the MSG SEVIRI AOI.

4 Outlook
Current results confirm the ability of neural networks to infer 3D clouds from 2D geostationary satellite
data comprehensively. An overall high agreement between observed and predicted data emphasizes the ap-
proach’s feasibility and potential for use in climate science applications dealing with multiscale cloud prop-
erties and associated environmental dynamics.
In the next step, the added benefit of the derived data for investigating climate feedback mechanisms will be
evaluated in proceeding applications.
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