

USING SOLA FOR INVESTIGATING REGIONAL DYNAMICS OF FLOW AT THE TOP OF THE OUTER CORE

Hannah F Rogers¹²

With Nicolas Gillet¹, François Dall'Asta¹, Magnus Hammer³, Chris Finlay³, and Mioara Mandea²

1 ISTerre, Université Grenoble Alpes, Grenoble, France 2 CNES, Paris, France 3 DTU Space, Lyngby, Denmark

OVERVIEW

Introduction to SOLA

Subtractive Optimally Localized Averages

Producing pygeodyn core surface flows

- General methodology
- Challenges incorporating SOLA into existing pygeodyn
- Current Results
- Future directions

Introduction to SOLA

- Subtractive Optimally Localized Averages (SOLA)
- Produce averaging kernels to obtain stable local estimates of the time derivatives of MF at the CMB (or other radii)
- Can be used to produce high resolution models of spatiotemporally localized SA and SV

(a) Map collecting local estimates of CMB radial field $\widehat{B_r}(\mathbf{r}_0, t_0)$ in $[\mu T]$.

© cnes

Introduction to SOLA

- Subtractive Optimally Localized Averages (SOLA)
- Produce averaging kernels to obtain stable local estimates of the time derivatives of MF at the CMB (or other radii)
- Can be used to produce high resolution models of spatiotemporally localized SA and SV

(a) SV averaging kernel for $\lambda = 2.5 \times 10^{-4} n T^{-1}$. Kernel width $\approx 30^{\circ}$.

© cnes

 Time-dependent stochastic flow inversion model with a Kalman filter

 Time-dependent stochastic flow inversion model with a Kalman filter

 Time-dependent stochastic flow inversion model with a Kalman filter

CHAOS-7

8 © cnes

- To maximise the benefit of the SOLA data, we want to incorporate the spatial weighting into our flow inversions
- For SOLA location j, we have to consider all the Lebedev locations i

Current Results

Current Results – SV Spectral Energy

 $S = f(L_{SV})$

Lowes-Mauersberger spectrum

Current Results – Flow Spectral Energy

 $S = f(L_U)$

Lowes-Mauersberger spectrum

Future Directions

- Run over a longer timeseries that covers all of the satellite era
- Take advantage of the point estimates for regional studies
- Investigate shorter period wave dynamics

FIGURE FROM ISTAS ET AL., 2023

13) © cnes

Acknowledgements

Author(s) has (have) received funding from the European Research Council (ERC) GRACEFUL Synergy Grant No. 855677

With thanks to Nicolas Gillet, François Dall'Asta, Magnus Hammer, Chris Finlay, and Mioara Mandea

