

Solar energy potential assessment on urban rooftops using digital surface models Xinyuan Hou^{1,2} and Stelios Kazadzis¹ Abstract

¹Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center, Switzerland; ²Department of Physics, ETH Zürich, 8093 Zürich, Switzerland

1 Background and Objectives

- Rooftop solar photovoltaic (PV) systems produce electricity
- without air pollution and greenhouse gas emissions and reduce carbon footprint Study objectives:
- •assess physical and geographical levels of solar energy potentials in actual atmospheric conditions (**clouds and aerosols**) on urban rooftops based on digital surface models (DSM)
- derive economic relevance of rooftop PV systems

2 Study Area

- Very High Resolution (1.1 m x 1.1 m) DSM for 2 neighborhoods in **Athens**, Greece ->
- Allow to calculate aspect, slope and consequently **shadows** for individual rooftops
- •e.g. an area in city-center with 2986 rooftops (0.68 km^2)

3 Data and Methods

- (1) **Dry clean** clear-sky irradiance by QGIS GRASS r.sun
- National Renewable Energy Laboratory sun position algorithm
- input: elevation, aspect, slope and date/time/**shadow** parameters

(2) **Clouds and aerosols**

- Global horizontal irradiance (GHI) all-sky / clear-sky (CS) \rightarrow Cloud modification factor
- Aerosol optical depth (AOD)

Data	Product	Temporal resolution	Reference
GHI & GHI_CS	CAMS radiation service	every 15 min	Qu et al., 2017
AOD at 550 nm	EAC4	every 3 h	Inness et al., 2019

Conclusions

(1) Digital surface models serve as a helpful tool to assess urban rooftop solar potential. (2) We demonstrate effects of atmospheric compositions and urban shadows on solar radiation:

- clouds effect up to > 30%
- aerosols and shadows generally < 5% in most months

Acknowledgement

This work is supported by the EU project "Eiffel Revealing the role of GEOSS as the default digital portal for building climate change adaptation & mitigation applications", Grant agreement ID: 101003518

Qu, Z. et al., (2017). Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method. Meteorol. Z., 26, 33–57. Inness, A. et al., (2019). The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556.

Application

Web map displaying solar potential and economic relevance

