

Florence Mainguenaud^{1,2,3,a}, Usman T. Khan¹, Laurent Peyras², Claudio Carvajal², Bruno Beullac², Jitendra Sharma¹ ¹York University, Lassonde School of Engineering, Toronto, Canada ³Aix-Marseille University, ED353, Marseille, France ²INRAE, RECOVER, Aix-en-Provence, France ^aflorence.mainguenaud@inrae.fr

1 - Research background

Earthen levees are part of flood defense systems as the levee in Etobicoke Creek (EC), Toronto, Canada (Fig.1). Although in good condition, a levee may fail during flood events [1]. In this research, we investigate the impact of levee failure due to backward erosion on flood risk.

Jniversité

2 – Method 2.1 – Hydraulic model

We used HEC-RAS to model a 350-yr return period event (Fig.2). Our hydraulic model is based on: a bathymetry survey for cross-sections, a high resolution DTM, and historical flow data. The flood extent is shown in Fig.3. We simulated two breaches (A, B in Fig.4, Fig.5) at different locations [2] to study the impact of levee failure on flood risk.

References:

[1] Mainguenaud F., Peyras L., Khan, U.T., Carvajal C., Sharma J., Beullac B., Under review. A probabilistic approach to dike reliability based on sliding, backward erosion and overflowing mechanisms: application to case study. Journal of flood risk management [2] Dasallas L., Kim Y., An H., 2019. Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water. 11(10):2048. [3] Rincón D., Khan U.T., Armenakis C., 2018. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences, 8(8):275.

Mapping the impact of levee failure on flood risks: A Toronto case study

2.2 – Flood risk mapping

Flood risk maps combine flood hazard (depth and velocity) with social (Tbl.1) and economical exposure [3]. In Tbl.2, we associated a qualitative vulnerability level (1-5) to the economical criterion based on land-use and to the percentage of population per social exposure criterion. We used ArcGIS Pro to overlay with equal weight each raster (Fig.6, Fig.7).

Tbl 1: Social exposure criteria		
Social Indicators	C	
Age	75-yrs and old	
	25 to 40-yrs	
Language proficiency	No English no	
Income	Low Income M	
Population	Population der	

		vuine	rability	
Tbl 2: Economical and social vulnerability levels				
Level	Economical		Social	
5 Very high	Industrial		> 80 %	
4 High	Commercial, residential build	dings	61 - 80 %	
3 Medium	Government and institutiona		41 - 60 %	
2 Low	Pervious build up areas		21 - 40 %	
1 Very low	Forest and recreational oper areas		≤ 20 %	

3 – Results

Breach A, showed that low bottom elevation leads to longer duration of breach flow and steep side slopes increase the velocity through the breach. Velocity depends on breach location as shown in Fig.8.

Breach B do not produce any noticable water velocity variation and behaves like overflow. Overall computed risk maps show that a larger area is at risk due to breaching as in Fig.9. However, the social vulnerability data set has a significant lower resolution than water depth&velocity map (Fig.10) and the economical vulnerability map, affecting the resolution of the risk. Hence, Fig.11 shows risk without social vulnerability.

		ອ້າງ Lo
Criterion		Gue adowlan
nd older		Me
-yrs		
ish nor French, French only		
ome Measure after tax		
on density per km ²		Joyce Archdekin Park
		Fig.6: Social

4 – Conclusions

event in EC: (Fig.9), alone.

two breach location

breach and (b) a breach

We studied the breach impact for a 350-yr return period

 breach location has a small effect on the maximal flood extent (Fig.8),

 breach shape B has similar effects to overflow in contrast to shape A,

breaching leads to significant changes to risk maps

 depth and velocity overlay (Fig.10) provides a better hydraulic hazard estimate than either depth or velocity

Our research shows that integrating levee reliability in regular flood risk assessment is important because breaches increase flood risks.

Acknowledgements'

	Achiowieugements.
an inspired Canadian	Environment Canada and TRCA for providing
	the hydraulic data; INRAE, Aix-Marseille
	University, and York University for the research
	fundinas.