Recent trends and variability in the oceanic storage of dissolved inorganic carbon

L. Keppler^{1,2,3}, P. Landschützer^{4,2}, S.K. Lauvset⁵, N. Gruber⁶

¹Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
 ²Max Planck Institute for Meteorology, Hamburg, Germany
 ³International Max Planck Research School on Earth System Modelling, Hamburg, Germany
 ⁴Flanders Marine Institute (VLIZ), Ostend, Belgium
 ⁵NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway

⁶Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland

Key Points:

- From 2004 through 2019, the global oceanic dissolved inorganic carbon (DIC) pool increased at an average rate of 3.2 ± 0.7 Pg C yr⁻¹
- Most of this increase is associated with the uptake of anthropogenic CO₂, while natural CO₂ is mostly redistributed within the ocean
- The interannual variability of DIC is largest in the tropical Pacific Ocean

Corresponding author: Lydia Keppler, lkeppler@ucsd.edu

This article has been accepted for publication and^{L} undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1029/2022GB007677.

This article is protected by copyright. All rights reserved.

Abstract

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66 67 Several methods have been developed to quantify the oceanic accumulation of anthropogenic carbon dioxide (CO_2) in response to rising atmospheric CO_2 . Yet, we still lack a corresponding estimate of the changes in the total oceanic dissolved inorganic carbon (DIC). In addition to the increase in anthropogenic CO_2 , changes in DIC also include alterations of natural CO_2 . Once integrated globally, changes in DIC reflect the net oceanic sink for atmospheric CO_2 , complementary to estimates of the air-sea CO_2 exchange based on surface measurements. Here, we extend the MOBO-DIC machine learning approach by Keppler et al. (2020a) to estimate global monthly fields of DIC at 1° resolution over the top 1500 m from 2004 through 2019. We find that over these 16 years and extrapolated to cover the whole global ocean down to 4000 m, the oceanic DIC pool increased close to linearly at an average rate of 3.2 ± 0.7 Pg C yr⁻¹. This trend is statistically indistinguishable from current estimates of the oceanic uptake of anthropogenic CO_2 over the same period. Thus, our study implies no detectable net loss or gain of natural CO_2 by the ocean, albeit the large uncertainties could be masking it. Our reconstructions suggest substantial internal redistributions of natural oceanic CO_2 , with a shift from the mid-latitudes to the tropics and from the surface to below ~ 200 m. Such redistributions correspond with the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. The interannual variability of DIC is strongest in the tropical Western Pacific, consistent with the El Ni \tilde{n} o Southern Oscillation.

1 Introduction

The global oceanic dissolved inorganic carbon (DIC) pool is a powerful recorder of changes in the net exchange of carbon dioxide (CO_2) across the air-sea interface, i.e., the strength of the net oceanic carbon sink. This net sink is the sum of a flux of natural carbon (C_{nat}) that reflects the exchange driven by changes in solubility, ocean circulation, mixing, and biological processes, and the flux of anthropogenic carbon (C_{ant}) that corresponds to the anomalous flux of CO_2 driven by the human-induced rise in atmospheric CO_2 (McNeil & Matear, 2013; Gruber et al., 2023). When integrated globally, the sources and sinks of natural CO_2 fluxes cancel each other out in a steady state as the ocean strives towards equilibrium with the overlaying atmosphere (Landschtzer et al., 2022). On the contrary, the observed increase in the net air-sea CO_2 exchange is caused by anthropogenic CO_2 emissions (Friedlingstein et al., 2022). An important exception is residual outgassing that reflects the balance between the input of carbon by rivers and the deposition of carbon on the seafloor (Sarmiento & Sundquist, 1992; Regnier et al., 2022). As long as this balance is maintained, this latter (i.e., natural) component does not leave an imprint on changes in DIC, so that changes in this pool are then directly attributable to the ocean interior accumulation or loss of both natural and anthropogenic CO_2 .

Knowing the magnitude of the net oceanic sink for CO₂ is crucial for closing the global carbon budget and its anthropogenic perturbation (Sarmiento & Gruber, 2002; Friedlingstein et al., 2022). The need is heightened by efforts such as the United Nations' global stocktake efforts (https://unfccc.int/topics/science/workstreams/global-stocktake), which require a more refined estimate of the changing ocean carbon content, connecting the surface and interior ocean, and demonstrating the total changes in DIC, as well as its spatial distribution. Finally, better global-scale constraints on the changes in oceanic DIC are of great interest to better document the progression of ocean acidification and better establish the connection between changes in seawater chemistry and biological impacts (Doney et al., 2009; Orr et al., 2005; Feely et al., 2004).

In terms of observations, the net oceanic CO_2 sink is at present primarily determined using measurements of the surface ocean partial pressure of CO_2 (p CO_2), which are mapped to the globe using various data interpolation methods (Landschtzer et al., 2014; Rdenbeck 68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91 92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

et al., 2015; Fay et al., 2021; Gregor & Gruber, 2021). The mapped pCO_2 is then used, in combination with the atmospheric pCO_2 and the gas transfer velocity, to estimate the air-sea CO_2 flux. However, this approach is subject to various uncertainties, such as data sparsity (Fay & McKinley, 2013), an ill-constrained gas transfer coefficient (Wanninkhof et al., 2009; Roobaert et al., 2019), and a potential offset in the pCO_2 measurements as they are not directly taken at the cool skin surface (Watson et al., 2020). Furthermore, the steady-state outgassing of river-derived carbon needs to be subtracted from the inferred flux to obtain the anthropogenic flux relevant to the global carbon budget. Estimates for this riverine flux range from 0.23 Pg C yr⁻¹ (Lacroix et al., 2020) and 0.45 ± 0.18 Pg C yr⁻¹ (Jacobson et al., 2007) to 0.78 ± 0.41 Pg C yr⁻¹ (Resplandy et al., 2018), with the most recent review by Regnier et al. (2022) suggesting a value of 0.65 ± 0.3 Pg C yr⁻¹. This range and the associated uncertainties add further uncertainty to the pCO_2 derived estimates of the net carbon uptake by the global ocean. Confidence in quantifying this net uptake could be strengthened if constrained independently through the direct determination of changes in the global ocean DIC content. Nevertheless, this is a challenging task, owing to the sparsity of observations, the substantial background DIC pool of ~37,000 Pg C (Keppler et al., 2020b), and the many physical and biological processes that govern the distribution of DIC in the ocean (Sarmiento & Gruber, 2006). A very successful approach to overcome this challenge has been to only focus on the interior ocean's accumulation of the C_{ant} component (Wallace, 1995; Tanhua et al., 2007). Under the assumption that the ocean is in a near steady state, several methods have been developed to determine the changes in C_{ant} either from single surveys of DIC (Brewer, 1978; Chen & Millero, 1979; Gruber et al., 1996), or from repeat hydrography programs (Friis et al., 2005; Clement & Gruber, 2018; Carter et al., 2019). The application of these methods has permitted the oceanographic community to quantify the increase in the C_{ant} inventory, both since preindustrial times (Gruber, 1998; Sabine et al., 1999) and for the past few decades (Friis et al., 2005; Wanninkhof et al., 2010; Carter et al., 2019), with the global studies providing invaluable constraints for the global budget of C_{ant} (Sabine et al., 2004; Gruber et al., 2019).

Although these global C_{ant} estimates have proven to be extremely valuable for constraining the global carbon budget and hence the fate of the emitted anthropogenic CO_2 , they have not been able to fully address whether the steady-state assumption or the assumption of a small C_{nat} signal is justified. Questions were raised early on, especially in the context of ocean warming (Keeling, 2005; Sabine & Gruber, 2005), which many models suggest will lead to a loss of CO_2 from the ocean (Joos et al., 1999; Sarmiento et al., 1998; Later, using a combination of different model and Matear & Hirst, 1999). observation-based methods, McNeil and Matear (2013) invoked the presence of a decadal-scale outgassing signal of C_{nat} , but without being able to support this conjecture with direct observations. Dedicated modeling studies also suggest that the ocean might have lost C_{nat} in recent decades, e.g., in response to the trends in the Southern Annular Mode (Le Qur et al., 2007; Lenton & Matear, 2007; Zickfeld et al., 2007; Hauck et al., 2013; Lovenduski et al., 2008, 2007). In their global study on the increase in anthropogenic CO_2 between 1994 and 2007, Gruber et al. (2019) speculated that perhaps as much as 5 Pg C of C_{nat} might have been lost from the ocean over this period. A recent review by Gruber et al. (2023) further assessed the role of the non-steady state and the associated potential loss of C_{nat} . Conversely, enhanced lateral transport of natural carbon from the land could yield a gain of C_{nat} in the ocean (Regnier et al., 2022). Similarly, changes in the circulation or biological productivity could cause an anomalous uptake or release of CO_2 from the atmosphere, altering the total stock of C_{nat} .

As the arguments for potential changes in C_{nat} accumulate, the need to constrain the changes in the total DIC pool increases, as this permits to assess the changes in both natural and anthropogenic CO_2 . When doing so, one needs to also consider that even if the global-scale changes in the natural CO_2 pool might be small, this pool is subject to strong redistributions within the ocean, associated with changes in circulation, shifts in ocean fronts, and changes in biological productivity, causing locally large changes in DIC (Clement & Gruber, 2018). Such changes are commonly seen when comparing the DIC distributions between two occupations of a particular hydrographic section (Wanninkhof et al., 2010; Carter et al., 2019). They are also expected in the context of interannual variability, especially in regions with large vertical undulations of the thermocline, and hence also the "carbocline," i.e., the strong vertical gradient in DIC. Such redistributions of DIC within the ocean not only pose a challenge for the detection of global-scale changes in the DIC pool, but they also potentially threaten organisms, as spatial redistributions of DIC might cause more rapid local changes in ocean acidification and, perhaps, a more rapid reaching of critical thresholds (McNeil & Sasse, 2016).

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

Thus, we must rely on physical seawater samples collected and analyzed during ship-based surveys and programs (Talley et al., 2016; Bates et al., 2014), strongly limiting the coverage and the sampling frequency. Most of these DIC measurements and the associated ancillary data are compiled and subjected to secondary quality control by the Global Ocean Data Analysis Project (GLODAP; Olsen et al. (2016); Key et al. (2004)). A recent version (GLODAPv2.2021) contains over one million measurements from across the global ocean, spanning measurements from 1972 to 2020 (Lauvset et al., 2021). Most of the measurements contained within GLODAP stem from repeat hydrography programs, where the same set of stations along long lines are revisited at roughly decadal intervals (Talley et al., 2016). In addition to GLODAP, some long-term time-series stations provide information on the temporal variability in the interior ocean at a few locations, including the Hawaii Ocean Timeseries (HOT; Dore et al. (2009)) and the Bermuda Atlantic Timeseries Study (BATS; Bates et al. (2014)). More recently, Argo floats equipped with biogeochemical (BGC) sensors that measure pH, salinity, and other variables, supplement the ship data. Using these float measurements and some empirical relationships to infer alkalinity, DIC can be estimated (Carter et al., 2018; van Heuven et al., 2011). However, this method has much larger uncertainties than the ship data (Bittig et al., 2018), and to date, the available BGC-Argo float data are largely limited to the Southern Ocean, as part of the Southern Ocean Carbon and Climate Observations and Modelling project (SOCCOM; Talley et al. (2019)), while the global ocean BGC-Argo array is still in its early stages (Bittig et al., 2019).

In parallel to the efforts in combining and unifying carbon cycle observations (Olsen et al., 2016; Bakker et al., 2016), a second branch related to big data analysis based on machine learning has emerged. Keppler et al. (2020b) adopted a cluster-regression approach previously applied to reconstruct the air-sea CO_2 exchange (Landschtzer et al., 2013, 2014) and extended it to map a monthly climatology of DIC in the upper 2000 m of the nearglobal ocean, i.e., Mapped Observation-Based Oceanic DIC (MOBO-DIC; Keppler et al. (2020a)). Similarly, Broulln et al. (2020) developed a single-step machine learning approach to map the monthly climatology of interior DIC at a global scale. In addition, a recent study has mapped out the temporal evolution of DIC globally (Gregor & Gruber, 2021), but this approach was limited to the documentation of variations at the sea surface. These studies revealed the feasibility of reconstructing the DIC content from observations at the global scale. In addition, using CMIP6 models and synthetic Argo data, Turner et al. (2022) demonstrated very recently that interior temperature and salinity data are well suited to reconstruct interior DIC fields and their variability. However, they have not yet mapped the interior ocean DIC with real-world Argo observations. Further, Sharp et al. (2022) successfully mapped monthly fields of interior ocean dissolved oxygen at a global scale, using a machine learning approach. However, mapped estimates of interior observation-based DIC remain limited to seasonal climatologies (Keppler et al., 2020b; Broulln et al., 2020) or the surface (Gregor & Gruber, 2021), and reconstructions of the trend and interannual variability of the upper ocean total DIC at the global scale based on direct observations are still lacking.

ad extend the monthly climatolog 1 DIC fields from 2004 through 2 1 poral extent of our reconstruction 1 and salinity fields from the A C product is mapped at a monton reaching 80°N in the Atlantic (Monton 1500 m depth. Subsequent 16 the interior oceanic DIC at a glocopy 17 and a glocopy 18 and a glocopy 19 and a glocopy 19 and 10 and 10

To fill this gap, we use the MOBO-DIC approach and extend the monthly climatology of DIC by Keppler et al. (2020b) to resolve monthly global DIC fields from 2004 through 2019 (i.e., January 2004 through December 2019). The temporal extent of our reconstructions is primarily determined by the availability of temperature and salinity fields from the Argo program that we use as key predictors. Our new DIC product is mapped at a monthly resolution on a $1^{\circ} \times 1^{\circ}$ grid, from 65°N to 65°S, and reaching 80°N in the Atlantic (see Supporting Information Fig. S1), extending from 2.5 m to 1500 m depth. Subsequently, we investigate the trend and interannual variability of the interior oceanic DIC at a global scale and put these changes into the context of the ongoing accumulation of anthropogenic CO₂ in the ocean's interior and from this, infer the changes in the natural CO₂ pool.

2 Data and Methods

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

190

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

2.1 Cluster-regression

We adopt the two-step neural network MOBO-DIC approach introduced by Keppler et al. (2020b) to map the sparse DIC observations to the (near) global ocean at monthly resolution for the period January 2004 through December 2019. Here, we present a summary of the most important features and the main changes compared to the climatological approach taken by Keppler et al. (2020b). Our approach first clusters the ocean into regions of similar properties using self-organizing maps (SOM) and then applies a feed-forward neural network (FFN) in each cluster to reconstruct a physical relationship between a set of driver variables and the target DIC data. This cluster-regression approach does not require information about the measurement location, a feature that separates it from many other mapping approaches (Sasse et al., 2013; Gregor et al., 2017; Bittig et al., 2018; Broulln et al., 2019, 2020). Thus, our regression method is solely based on the physical and biogeochemical relations between the predictor and target variables. Not using the measurement location as a predictor permits our method to benefit from information obtained in other places within each cluster, where predictor and target data are similarly related. Due to data availability (silicic acid and nitrate are only available in the upper 500 m) and the presence of different processes near the surface and below, we run the method separately for two depth slabs: from 2.5 m to 500 m and from 500 m to 1500 m. We take the mean of the two estimates at 500 m to minimize boundary problems between the two depth slabs. This approach does not eliminate all discontinuities, but they are well within the uncertainty limits of the method.

In the first step, we use a SOM, i.e., a type of unsupervised machine learning, to determine clusters. Following Keppler et al. (2020b), we use six clusters in the upper 500 m and four between 500 m and 1500 m. We tested various set-ups, including different numbers of clusters, and found that this number of clusters leads to the smallest overall error in the DIC reconstruction. To avoid boundary problems inherent in cluster-regression approaches, we adjust the original method by creating an ensemble of SOM clusters, following the approach introduced by Gregor and Gruber (2021). To this end, we performed the SOM-step three times, where the DIC input has a different weight ranging from 2 to 4 in each run. The resulting SOM clusters vary mostly around the boundaries (see Supporting Information Fig. S2). In the second step, we run an FFN for each SOM cluster. Our FFN network architecture consists of 8 neurons in the hidden layer of the FFN, as this setup results in the most robust output based on a comparison between the mapped output and the original training data.

To avoid overfitting, we use 80% of the input data to train the network and the remaining 20% for internal cross-validation. As the training and validation data are separated randomly, the output from the FFN is slightly different each time it is run. For each SOM setup, we run the FFN five times, where each time, the data is separated differently into training and validation data to create an ensemble of outputs. Thus, our ensemble comprises 15 members (three SOM setups, each with five FFN runs). The final

225

226

227

228

229

230

231

232 233

234

235

236

237

238

230

240

241

242

243

244

245

246 247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

2.2 Data and Domain

reported data are the mean across the ensemble, and the standard deviation across the ensemble represents the uncertainty linked to the weighting of the SOM clusters and the random assignment of training and validation data (hereafter referred to as prediction uncertainty, see Supporting Information Fig. S3). We smooth the ensemble mean fields at each depth level by taking the running mean with a window size of three grid cells in each horizontal direction (latitude and longitude) and the temporal dimension. Some runs produced outputs with unlikely values, e.g., considerably larger or smaller than the measured variables in GLODAP. We attribute this to the random assignment of training and validation data, where some data subsets are unsuitable for training. Such runs with unlikely values occurred both with the GLODAP training data and with synthetic data, so it cannot be attributed to noise in the observations. We have tried many different setups of the network to eliminate this issue. However, with the current training data, we were unable to resolve it. Thus, when an output results in values that are more than 5 standard deviations larger or smaller than the observed data in GLODAP (i.e., outside of the range 1639 to 2575 μ mol kg⁻¹ and 1898 to 2629 μ mol kg⁻¹, for the upper and lower depth slab, respectively), the entire ensemble member was discarded and re-run with the same setup, but with a different sub-set of training data. We trust that removing the runs with unlikely values, in addition to the bootstrapping approach, yields a robust estimate. As input to the SOM, we use monthly mapped fields of temperature and salinity based on Argo float measurements (Roemmich & Gilson, 2009) and an annual-mean climatology of DIC (Lauvset et al., 2016). We weigh the DIC input stronger than the physical predictors so that the clusters largely represent the climatological mean DIC and, to a lesser extent, the physical water masses, following Landschtzer et al. (2013).

For the FFN step, we use the ship measurements of DIC from GLODAPv2.2021 between January 2004 and December 2019 (Lauvset et al., 2021) as the target data. We only retain GLODAP data with a WOCE quality control of 0 or 2 and a secondary quality control flag of 1. As predictors, we use the same Argo-based temperature and salinity fields that we used during the SOM step. In addition, we use monthly climatologies of mapped dissolved oxygen, nitrate, and silicic acid from the World Ocean Atlas 2018 (WOA18; Boyer et al. (2018)). These climatologies are based on ship measurements from 1955 through 2017 and were interpolated to the global ocean using optimal interpolation. As the nitrate and silicic acid from WOA only extend until 500 m, they were not used as predictors in the deeper slab, while dissolved oxygen extends to 1500 m in WOA and is thus a predictor variable in both depth slabs. Deviating from the approach taken to produce the monthly climatology of MOBO-DIC (Keppler et al., 2020b), we use atmospheric pCO_2 as an additional predictor in the upper depth slab (0 to 500 m) to be able to represent the long-term trend in the atmospheric CO_2 concentration. Atmospheric pCO_2 at each grid cell was computed from the GlobalView marine boundary layer product of the mole fraction of CO_2 (xCO₂; GlobalView-CO2 (2011)) and converted to pCO₂ following Landschtzer et al. (2013). In the deeper slab below 500 m, we use Julian days as a predictor to represent any long-term trend in the data. We tested various set-ups where we use latitude and longitude (in the form of sin(lon) and $\cos(\ln)$, and depth as input variables, and found that the inclusion of this spatial information in the predictors did not improve our DIC reconstructions. Thus, the predictors between the surface and 500 m are temperature, salinity, dissolved oxygen, nitrate, silicic acid, and atmospheric pCO₂. Between 500 m and 1500 m, we use temperature, salinity, dissolved oxygen, and Julian day as predictors. A more detailed discussion on the choice of predictors can be found in Keppler et al. (2020b).

Note that we use the mapped monthly mean fields as predictors, as opposed to the co-measured data from GLODAP during the training step of the FFN. We tested both approaches but found the results were very noisy when using the co-measured data as

276

277

278

279

280

281

282

283 284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

The availability of the data limits the domain and resolution of our mapping approach. For example, we limit the vertical extent of the multi-year product here to 1500 m (as opposed to 2000 m used for the MOBO-DIC climatology) as the DIC observations are very sparse below 1500 m and only temperature and salinity are available as physical or biogeochemical predictors there. This lack of predictors below 1500 m prevents a robust estimate of the DIC variations and trends at these depths. Temporally and spatially, the limits tend to be set by the predictor data. The Argo-based data products used here extend from 65°N to 65°S globally, to 80°N in the Atlantic Ocean, with shallow coastal regions being masked, marking the horizontal extent of our domain. As the mapped Argo-dataset starts in 2004, and GLODAPv2.2021 includes cruise data until January 2020, the temporal extent of MOBO-DIC is from January 2004 through December 2019.

All predictors have a monthly resolution on $1^{\circ} \times 1^{\circ}$ grids, and we interpolate them onto 28 uneven depth levels between 2.5 m and 1500 m. Note that due to an update to the Argo data, the domain of this study is slightly larger than in the monthly climatology of MOBO-DIC (Keppler et al., 2020b): it extends further north in the Atlantic (until 80°N instead of 65°N), and some more coastal and shallow regions are included (see Supporting Information Fig. S1). As the domain covers most of the global ocean, we refer to our domain as global in-text but want to note that it is technically only near-global.

2.3 Calculation of the trend and inventory changes

We estimate the trend in DIC over our period based on the slope of a linear regression of the deseasonalized DIC at each grid cell. The data were deseasonalized by applying a 12-month running mean at each grid cell. To calculate the trends in the inventories, we first normalize DIC for salinity (hereafter sDIC) to remove any effects from potential changes in the salinity, following Friis et al. (2003). For this normalization, we use the same monthly Argo-based salinity product as above (Roemmich & Gilson, 2009), using the temporal mean salinity from 2004 through 2019 at each grid cell as reference salinity. We convert sDIC from gravimetric (unit: μ mol kg⁻¹) to volumetric (unit: μ mol m⁻³), and then vertically integrate the volumetric trend in the whole domain (upper 1500 m). To estimate the uncertainty in the trend, we calculate it with each of the 15 ensemble members and take the standard deviation range as the uncertainty range. Note that the uncertainty of the trend only includes the ensemble spread (i.e., the prediction uncertainty) and does not consider other sources of error, for example, those associated with measurements or representation uncertainty. We trust that there should not be a trend in measurement or representation uncertainty in the data, yielding a robust estimate of the overall trend uncertainty. We then conduct an upscaling to estimate the global changes in sDIC that include regions beyond our domain, i.e., the high latitudes, coastal regions, and below 1500 m (see Supporting Information Section S3).

2.4 Comparison with C_{ant}

We compare the trend in MOBO-DIC with an estimate of the change in anthropogenic CO_2 (ΔC_{ant}). For this comparison, we use two estimates of C_{ant} and scale them to our study period. The two estimates are (i) the total change in C_{ant} between 1800 and 2007 and (ii) the change in C_{ant} between 1994 and 2007. The former is estimated by adding the total C_{ant} up to 1994 estimated by Sabine et al. (2004) to the change in C_{ant} between 1994 and 2007 estimated by Gruber et al. (2019). For the latter, we use the ΔC_{ant} by Gruber et al. (2019).

To scale C_{ant} to our period, we apply the transient steady-state approach described by Mikaloff Fletcher et al. (2006) and Gruber et al. (2019), which relies on the assumption that the change in C_{ant} scales with the change in atmospheric CO₂:

$$\Delta C_{ant}^{t_3 - t_2} = \alpha(t_0, t_1, t_2, t_3) \cdot \Delta C_{ant}^{t_1 - t_0} \tag{1}$$

where t_0 and t_1 are the bounds of the periods used to determine ΔC_{ant} (either 1800 through 2006 or 1994 through 2006) and t_2 and t_3 bound the period to which the scaling should be applied to (here: 2004 through 2019). The scaling factor α is specific for each pair of periods, i.e., is a function of t_0, t_1, t_2 , and t_3 , and can be estimated from the relative changes in atmospheric CO₂, also considering changes in the Revelle factor (Sarmiento et al., 1995) and the changes in the air-sea disequilibrium (Gruber et al., 1996; Matsumoto & Gruber, 2005):

$$\alpha(t_0, t_1, t_2, t_3) = \frac{\Delta_t p C O_2^{atm}(t_3 - t_2)}{\Delta_t p C O_2^{atm}(t_1 - t_0)} \cdot \frac{\xi(t_2 . t_3)}{\xi(t_0 . t_1)} \cdot \frac{\gamma(t_2 . t_3)}{\gamma(t_0 . t_1)}$$
(2)

where the first factor on the right-hand side is the relative change in atmospheric CO₂, the second factor is the relative change in the disequilibrium ξ , and the third factor is the relative change in the Revelle factor γ .

In the first case, i.e., for the base period 1800 through 2006, inserting the observed values in atmospheric CO₂ in the respective years ($t_0 = 1800, 280$ ppm; $t_1 = 2006, 381$ ppm; $t_2 = 2004; 377$ ppm, $t_3 = 2019, 410$ ppm) gives a value of 0.33 for the first factor on the righthand side of Eq. 2. For the disequilibrium, we take the same estimate Gruber et al. (2019) used when scaling from 1800 through 1993 to 1994 through 2006. They estimated a change in the disequilibrium of about 6 μ atm between 1800 and 1994, and about 3 μ atm between 1994 and 2007, yielding a ratio of 0.94. Similarly, we also take the estimate by Gruber et al. (2019) of 0.94 for the third factor, i.e., the ratio of the Revelle factors. Entering these three ratios, we obtain an overall scaling factor α of 0.29 (0.33 \cdot 0.94 \cdot 0.94) when comparing the period 1800 to 2007 with the period from 2004 through 2019.

In the second case, the base period for the scaling factor goes from 1994 (t_0 , 358 ppm) through 2006 (t_1 , 381 ppm), yielding a relative change in atmospheric CO₂ of 1.45 compared to the period 2004 (t_2 , 377 ppm) through 2019 (t_3 , 410 ppm). As the two periods are largely overlapping in this case, we assume that the ratio of the disequilibrium and the ratio of the Revelle factors are very close to 1 and thus set their values to 1, yielding an overall scaling factor α of 1.45 when comparing the period 1994 to 2007 with the period from 2004 through 2019.

This scaling is based on many assumptions, especially the assumption of a transient steady-state. While the large-scale distribution of C_{ant} has been demonstrated to follow this prediction rather closely, Gruber et al. (2019) pointed out that the reconstructed distribution of the change in C_{ant} between 1994 and 2007 differs in a few places considerably from that reconstructed for the period up to 1994. In particular, they found a meridional shift in the accumulation within the Atlantic Ocean, with a reduction in the North Atlantic storage being compensated by an increase in the temperate latitudes of the South Atlantic. Using two different base periods, we attempt to quantify the potential impact of such changes on our conclusions. Direct estimates of the accumulation of C_{ant} over the same period as analyzed here would be preferable to our scaling approach but are not published to date.

3 Uncertainty Assessment

328

329

330

331

332

333

334

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

365

366

367

Our method fills very substantial gaps in space and time (see Supporting Information Fig. S4). The GLODAP observations of DIC cover even less of the ocean in horizontal

space and time than the surface fCO_2 measurements in the SOCAT database that are used to construct surface ocean flux products (Landschtzer et al., 2014; Gregor & Gruber, 2021; Rdenbeck et al., 2015), i.e., SOCAT only covers approximately 3% of 1°x1° grid cells for any given month across the surface ocean in the 2010s (Gruber et al., 2023). Although GLODAP contains more data points by containing the vertical dimension, i.e., interior ocean data, we still have to fill substantial gaps at each depth level. In each year from 2004 through 2019, we have on average 30 ± 9 (mean ±1 standard deviation) observations per depth bin. Assuming that this observation was representative of a 2°x2° grid at each depth level, would mean that only about 0.3% of the global ocean was observed for any given month, requiring that the other 99.7% are filled through our statistical gap-filling methodology. Thus, we emphasize that users keep the different uncertainties in mind when using our product and interpreting our results. Here, we summarize the different sources of uncertainty in our analysis.

3.1 Calculation of the overall uncertainty

368

369

370

371

372

373

374

375

376

377

378

379

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

We identify three main sources of uncertainties that contribute to the total uncertainty of our DIC estimate, following Gregor and Gruber (2021): the uncertainties linked to the measurements (M), the representation (R), and the prediction (P). The overall uncertainty of our DIC estimate (DIC_{err}) can then be estimated with standard error propagation:

$$DIC_{err} = \sqrt{M^2 + R^2 + P^2} \tag{3}$$

The uncertainty M linked to the measurements stems from sampling errors and imprecisions in the measurement system. While GLODAP currently does not report measurement uncertainties, they include a measure of spatial consistency based on inter-cruise comparisons, which amounts to 2.4 μ mol kg⁻¹ for DIC (Lauvset et al., 2021). We assume that this uncertainty is the same at all grid points, which is likely an overestimation at some points and an underestimation at others.

The representation uncertainty R results from the fact that the discrete measurements in GLODAPv2.2021 that are used as target data to train the network are taken at one point in time and space and thus might not represent the true monthly mean of the $1^{\circ} \times 1^{\circ}$ grid cell and the depth bin it falls in. Especially problematic are regions where the spatiotemporal variability is high and the number of observations in a grid cell and depth bin is low. It is not straightforward to quantify the representation error as this requires full knowledge of the spatiotemporal variability of DIC. Gregor and Gruber (2021) estimated the representation error of total alkalinity of about 16 μ mol kg⁻¹ at the sea surface of the open ocean. As the density and spatial distribution of total alkalinity and DIC measurements in GLODAP are similar, and regions with high spatiotemporal variability in total alkalinity tend to be regions of high variability in DIC as well, we adopt this estimate for all grid cells and depth bins. We recognize that alkalinity tends to be less variable than DIC, especially near the surface. In addition, the representation error is expected to be larger near the coast than in the open ocean due to more variability near the coasts and is also expected to decrease with depth (Torres et al., 2021), adding some uncertainty to our uncertainty estimate. Overall, we expect that R might be underestimated near the surface and the coast and overestimated at depth.

The prediction uncertainty P represents how well our method can map DIC in time and space. We take the standard deviation across the 15-member ensemble of our bootstrapping approach as our estimate of the prediction error. The differences in the ensemble members are linked to both the ensemble of SOM clusters and the different subsets of training and validation data, as described in Section 2.1. We note that our approach to quantify the prediction uncertainties only considers the spread induced by variations of the method and not the inherent uncertainty of the method itself. Thus, our approach may underestimate the potential errors stemming from the very limited time-space distribution of the available data. As this error is difficult to quantify, we rely on our evaluations with independent observations, previous mapped estimates, and synthetic data (Section 4). The global mean prediction uncertainty is 7 μ mol kg⁻¹, but with a large spread. We find the highest prediction error in the northern Indian Ocean (up to ~80 μ mol kg⁻¹), where the observations are particularly sparse and where our estimate is heavily extrapolated (Supporting Information Fig. S3). Such large local uncertainties illustrate that our approach can reconstruct global fields, but care must be taken when evaluating regional changes, as the uncertainties on a regional level are quite high. Combining the three uncertainty contributions (Eq. 3) yields an overall global mean uncertainty of 18 μ mol kg⁻¹.

3.2 Quality of fit

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

During our mapping approach, we estimate the target data at all grid points. Thus, unlike in an interpolation, there is a difference between the target data (i.e., GLODAPv2.2021) and the mapped estimate (i.e., MOBO-DIC). In Supporting Information Fig. S4, we present these residuals to get a better handle on the quality of our fits. This analysis intends to examine if there are any systematic offsets in different regions or depth levels. It also highlights the magnitude of the differences between the training data and MOBO-DIC. We find that there is no systematic under- or overestimation compared to the training data, and the global mean bias cancels out to be 0, while the global mean root mean square difference (RMSD) is 16 μ mol kg⁻¹ (see Table 1 and Supporting Information Fig. S4), slightly less than our global mean uncertainty of 18 μ mol kg⁻¹.

4 Evaluation

We evaluate the quality of the mapped MOBO-DIC product with various independent observations and using a synthetic dataset derived from a model for which we know the true value. Independence means here that these data were not used for the training of MOBO-DIC (see Table 1 in the Main Text for a summary and Supporting Information Sections S5 and S6 and Figs. S5-S12 for a more in-depth analysis of the evaluation).

To evaluate our method with the synthetic data, we subsample the simulated DIC in the biogeochemical component of the Ocean General Circulation Model HAMOCC (Ilyina et al., 2013; Mauritsen et al., 2019) when and where we have observations in GLODAPv2.2021. These synthetic data are pseudo-observations from the HAMOCC model and not real observations. For the oxygen and nutrient fields that we use as predictors, we use the monthly climatologies of these simulated variables, to be consistent with our method using real observations. We then run our MOBO-DIC method with these synthetic data to reconstruct the simulated DIC fields. We can then compare our reconstructed fields with the actual DIC in HAMOCC.

For the observations, we use three different sources: First, we use a suite of mapped DIC climatologies, all of which are based on GLODAP data (Lauvset et al., 2016; Keppler et al., 2020b; Broulln et al., 2020). Second, we compare MOBO-DIC with observations from time-series stations and biogeochemical Argo floats. Third, we use the mapped surface DIC product contained in OceanSODA-ETHZ (Gregor & Gruber, 2021), allowing us to compare the monthly $1^{\circ} \times 1^{\circ}$ fields at the surface when and where the two datasets overlap (January 2004 to December 2018).

We first evaluate the climatological mean, then the trend, and the interannual variability, for each of these evaluation data where the temporal resolution allows. Note that we use DIC and not sDIC in the evaluation with observations, as salinity is not always co-measured, and using monthly 1-degree gridded salinity fields could introduce

errors. In contrast, our comparison of synthetic MOBO-DIC and the HAMOCC model uses sDIC, as here we have both salinity and DIC as monthly 1-degree gridded fields.

4.1 Evaluation of climatological mean

The evaluation of the MOBO-DIC method with the synthetic data from HAMOCC illustrates that the method is well-equipped to reconstruct the mean DIC fields in HAMOCC well (see Table 1). MOBO-DIC reconstructs the simulated climatological mean DIC fields with a negligible bias of -1 μ mol kg⁻¹ and with an RMSD of 12 μ mol kg⁻¹.

The evaluation with the observational climatological constraints also reveals good performance of MOBO-DIC. The mean differences relative to the Lauvset and Broullón climatologies are between 7 and 10 μ mol kg⁻¹, and each has an RMSD of 17 μ mol kg⁻¹. This is within the combined uncertainties of MOBO-DIC and the comparison data sets (see Table 1 and Supporting Information Fig. S5 and S6). It also needs to be noted that the Lauvset climatology is normalized to the year 2002, while the Broullón monthly climatology is normalized to 1995. Assuming an average surface DIC increase of ~2 μ mol kg⁻¹yr⁻¹, based on the anthropogenic perturbation, we estimate that the average surface concentration of MOBO-DIC (average year: 2012) is ~20 μ mol kg⁻¹ higher than the surface Lauvset climatology (normalized to 2002) and ~34 μ mol kg⁻¹ higher than the surface Broullón monthly climatology (normalized to 1995). The total differences for the Lauvset and Broullón climatologies are less than this as the reported biases in Table 1 are averages over the entire water column, but we observe surface differences on these orders in Supporting Information Fig. S5 and S6.

Surprisingly, the bias and RMSD between the monthly climatology of MOBO-DIC (Keppler et al., 2020a) and this version of MOBO-DIC is larger (11 μ mol kg⁻¹ and 20 μ mol kg⁻¹, respectively) than the RMSD between the other two climatologies that are based on different methods, albeit well within the combined uncertainties. The MOBO-DIC climatology is centered around the years 2010/2011, while this study is centered around the year 2012. Thus, the expected surface difference should maximally be of the order of $\sim 4 \ \mu \text{mol kg}^{-1}$. Therefore, we cannot attribute the difference to a change in the periods. Instead, we found that the monthly climatology of MOBO-DIC from Keppler et al. (2020a) contains less DIC in the subsurface equatorial Atlantic and Indian Ocean than the Lauvset climatology (see Fig. S4 in Keppler et al. (2020a)), while our new version of MOBO-DIC is more consistent with the Lauvset and Broullón climatologies (see Supporting Information Fig. S5). As there are very little data in the equatorial Atlantic and Indian Ocean, it is difficult to determine which of the estimates lies closer to the true value. We speculate that the true value likely lies closer to the three estimates that are close to each other (Lauvset, Broullón, and this study), than the one that differs (monthly climatology of MOBO-DIC).

The biases between MOBO-DIC and the comparison data sets from time-series stations and floats ranges from -5 to 16 μ mol kg⁻¹. As the biases are both positive and negative, there is no indication of MOBO-DIC having a systematic bias towards over/underestimating the global carbon content (see Table 1 and Supporting Information Fig. S9 and S10). The RMSD between MOBO-DIC and these data range from 14 μ mol kg⁻¹ for the SOCCOM floats to 42 μ mol kg⁻¹ for Drake Passage but are mostly between 15 and 20 μ mol kg⁻¹, i.e., comparable to the mean global uncertainty of MOBO-DIC (18 μ mol kg⁻¹). In all cases except for Drake Passage, the RMSD is within the combined uncertainties of MOBO-DIC at the location of the compared data set and the uncertainty of the compared data set, using standard error propagation. The disagreement at Drake Passage, a well-observed time-series station, is associated with large local variabilities that are not captured in MOBO-DIC and are further discussed in Section 4.3.

Comparing MOBO-DIC at the surface with the surface DIC from OceanSODA-ETHZ, we find that the magnitude and spatial patterns of the mean DIC agree very well, considering

Table 1. Summary of the bias, defined here as the mean difference (MOBO-DIC – comparison data sets), and the RMSD between MOBO-DIC and the comparison data sets. Also displayed are the mean uncertainty of MOBO-DIC at the time and location of the compared data set and the uncertainty of the comparison data sets.

Compared data set	Type of data	Bia
GLODAPv2.2021	Ship data, without interpolation or mapping (used to train the neural network)	y.wile
Lauvset climatology	Global climatology (optimal interpolation)	y.com
Broullón climatology	Global monthly climatology (single-step neural network)	/doi/
MOBO-DIC _{clim}	Global monthly climatology (cluster-regression)	10.10
HAMOCC	Synthetic data	29/20
BATS	Time-series station	22GB
HOTS	Time-series station	0076
Drake Passage	Time-series station (surface)	77 by
SOCCOM floats	Calculated DIC from BGC floats (pH) with LIAR algorithm	Univ
OceanSODA-ETHZ	Global surface estimate (cluster-regression)	ersity C

they are based on independent data (SOCAT pCO₂ vs. GLODAP DIC; Bakker et al. (2016); Lauvset et al. (2021)). The global mean RMSD between the two data sets is 15 μ mol kg⁻¹, and there is a mean bias of approximately 4 μ mol kg⁻¹, which is well within the uncertainties (see Table 1 and Supporting Information Fig. S11 a-c).

4.2 Evaluation of trends

Our synthetic MOBO-DIC generally reconstructs both the spatial distribution and magnitude of the trend of sDIC in HAMOCC well, with no indication of a systemic overor underestimation of the trend (see Supporting Information Fig. S7). An exception is the deep eastern equatorial Pacific, where MOBO-DIC overestimates the trend. This could be the result of overfitting or of challenges of MOBO-DIC to fit the trends in a region with very large lateral gradients and where data coverage is intermittent. We do not see similarly large trends in the reconstructions with observations, possibly because the observed lateral gradients are smaller than those in the model. Still, this mismatch in the synthetic data suggests that the MOBO-DIC reconstructed trends are likely somewhat less robust than the climatologies and that care must be taken to avoid an overinterpretation of the results.

The sDIC trends at the time-series stations are comparable to MOBO-DIC at the times and locations of these independent observations (see Table 2 and Supporting Information Fig. S9). For example, we observe a mean trend in the water column at BATS of 7 μ mol kg⁻¹ decade⁻¹, while the mean trend in the water column in MOBO-DIC at the grid cell closest to BATS is 5 ±2 μ mol kg⁻¹ decade⁻¹. However, some quantitative differences exist, with the largest difference in the trend found at depths between 600 and 800 m at BATS. There, MOBO-DIC, with an estimated trend of only 5±2 μ mol kg⁻¹ decade⁻¹ underestimates the observed trend of 16 μ mol kg⁻¹ decade⁻¹ quite substantially. With BATS being one of the best-constrained time-series sites, the observed trend is very robust. The trend is much better reconstructed in the shallower waters at BATS, indicating that this is not a general issue but likely an issue specifically associated with the intermediate water masses in the North Atlantic.

MOBO-DIC also underestimates the trend seen in the BGC-Argo floats in the Southern Ocean (SOCCOM floats) between 20 and 40 m (see Table 2 and Supporting Information Fig. S10). The observed trend is -20 μ mol kg⁻¹ decade⁻¹, while the trend estimate in MOBO-DIC at the same grid cells is only -9±2 μ mol kg⁻¹ decade⁻¹. There is a known difference California, Wiley Online Library on [14/04/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons I

9449224, ja, Downloaded from https://agupubs

9449224; ja, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GB007677 by University of California, Wiley Online Library on [14/04/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

between ship-based DIC measurements and DIC derived from float pH measurements (Gray et al., 2018). However, this offset is thought to be relatively steady and should not affect the trend. Nevertheless, the time series is short and spatially sparse, so it is not entirely clear whether the issue is with MOBO-DIC or with the SOCCOM-derived DIC trend.

The trend of MOBO-DIC at the surface has a similar spatial distribution but is slightly smaller than the trend of the mapped surface DIC from Gregor and Gruber (2021), with a global mean trend between January 2004 and December 2018 of $0.6\pm0.1 \ \mu\text{mol kg}^{-1} \ \text{yr}^{-1}$ and $0.8 \ \mu\text{mol kg}^{-1} \ \text{yr}^{-1}$, respectively (see Supporting Information Fig. S11 d-f). As OceanSODA-ETHZ is based on considerably more surface measurements than MOBO-DIC, it is likely that MOBO-DIC slightly underestimates the trend of the surface DIC.

4.3 Evaluation of Interannual variability

Similar to the trend, our synthetic MOBO-DIC reconstructs the spatial distribution and magnitude of the interannual variability, defined here as the standard deviation across the ensemble, of sDIC in HAMOCC well (see Supporting Information Fig. S8). However, we also find an artifact in the deep eastern equatorial Pacific, i.e., the same region where we had difficulties with the trend. There, the interannual variability is too large in the synthetic MOBO-DIC reconstruction. Again, no such artifact exists in the MOBO-DIC reconstructions with observations, but smaller artifacts cannot be ruled out.

MOBO-DIC tends to underestimate the observed interannual variability of sDIC at the time-series stations and the locations of the SOCCOM floats (see Table 2 and Supporting Information Figs. S9 and S10). The biggest difference in the interannual variability is between 20 and 40 m at HOT, where MOBO-DIC estimates a variability of only 4 μ mol kg⁻¹, while the observations suggest a value of 11 μ mol kg⁻¹. As above, such differences can be at least partially explained by the observations containing a lot of noise and not necessarily being representative of the mean monthly 1° fields. At Drake Passage, the comparison data displays considerably more variability than our gridded product and may include outliers. Thus, there are instances where the discrepancies between MOBO-DIC and the comparison data sets are beyond the uncertainty limits. We expect that this is mostly due to large local variabilities that are smoothed out in the monthly mean 1°×1° fields in MOBO-DIC.

The interannual variability of MOBO-DIC at the surface also has a similar distribution and is slightly smaller than the interannual variability of the mapped surface DIC from Gregor and Gruber (2021) (see Table 2 and Supporting Information Fig. S11 g-i). Here, we observe global mean standard deviations of 3 and 4 μ mol kg⁻¹, respectively (see Supporting Information Fig. S11 g-i). An explanation for their slightly higher variability could lie in the fact that OeanSODA-ETHZ uses satellite-based sea surface temperature (SST) as a predictor while we use float data for temperature and salinity. Satellite-based SST estimates are known to display more variability than float-based estimates (Roemmich & Gilson, 2009). Further, OceanSODA-ETHZ has less interannual variability in pCO₂ than other surface products such as SOM-FFN by Landschtzer et al. (2016). Thus, the available evidence suggests that MOBO-DIC tends to underestimate the interannual variability. We suspect that if time-varying monthly fields of oxygen and nutrients were available as predictors, the interannual variability in MOBO-DIC might be larger. In addition, if we had more DIC training data available, the interannual signal could likely be captured better.

5 Results and Discussion

5.1 Global changes in the DIC inventory

The reconstructed (near) global sDIC inventory between 0 and 1500 m increased steadily from 2004 through 2019, with a total increase of 42 ± 5 Pg C over this period (Fig. 1). All

Table 2. Comparison of the trends (in μ mol kg⁻¹ decade⁻¹) and interannual variability (IAV, in μ mol kg⁻¹), defined as the standard deviation in time (seasonal cycle and trend removed), from independent DIC estimates, and from MOBO-DIC at the time and locations of the independent data. Due to data sparsity in the observational data, we average the fields over depth slabs (20 to 40 m, 100 to 150 m, 600 to 800 m). The locations of the stations are illustrated in Supporting Information Fig. S1.

	$\begin{array}{c} \text{Compared data set} \rightarrow \\ \text{Depth} \downarrow \end{array}$	BATS	MOBO-DIC at BATS	НОТ	MOBO-DIC at HOT	Drake Passage
Trend	20-40 m	1	7	5	2	108
	$100-150 {\rm m}$	3	8	13	6	N§∕A
	600-800 m	16	5	4	5	N A
IAV	20-40 m	5	2	11	4	5779y
	100-150 m	4	2	6	2	NF/A
	600-800 m	4	1	3	1	
						0

depth ranges contribute to this trend, with $\sim 16\%$ of the increase in sDIC having occurred in the upper 150 m, $\sim 18\%$ between 150 and 300 m, $\sim 38\%$ between 300 and 700 m, and $\sim 28\%$ between 700 and 1500 m. Superimposed onto this strong positive trend, we observe the effect of the seasonal cycle on the total inventory (order of ~ 2 Pg C), some interannual variations, and a weakening of the trend in the second half of the record, most strongly visible in the deepest depth slice analyzed, i.e., below 700 m.

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

By adding an estimate of the sDIC changes in the shallow coastal regions and the high latitudes $(3\pm0.4 \text{ Pg C})$ and in the ocean below 1500 m $(6\pm6 \text{ Pg C})$; see Supporting Information Section S3), we arrive at a global sDIC inventory change of $51\pm11 \text{ Pg C}$ over the 16 years of our analysis. This corresponds to an average rate of increase of $3.2\pm0.7 \text{ Pg C yr}^{-1}$. We interpret this increase in sDIC to be mostly of atmospheric origin, i.e., reflecting a net uptake of CO₂ from the atmosphere, although we cannot exclude a small contribution coming from other sources, such as a trend in the input from rivers and sediment sources, or an imbalance with the marine organic carbon pool.

Our interior ocean data-based net ocean uptake estimate of 3.2 ± 0.7 Pg C yr⁻¹ is comparable with surface pCO_2 observation-based estimates of the net carbon flux from the atmosphere into the ocean. The latest update of the net air-sea CO₂ flux estimate by Landschtzer et al. (2016), which includes both the open and coastal ocean, suggests a global uptake of 2.1 ± 0.5 Pg C yr⁻¹ from 2004 through 2019. Adding a riverine outgassing of CO₂ of 0.6 ± 0.4 Pg C yr⁻¹ (Friedlingstein et al., 2022; Regnier et al., 2022), these surface ocean data suggest a net uptake of 2.7 ± 0.6 Pg C yr⁻¹. Similar numbers are obtained when using an ensemble of surface pCO₂ data (Fay et al., 2021). This is 0.5 ± 0.6 Pg C yr⁻¹ less than our estimate based on the increase in ocean interior sDIC but within the uncertainty bounds. Also, a scaled estimate of the accumulation of anthropogenic CO₂ in the ocean interior over this time period suggests a global uptake on the order of close to 3 Pg C yr^{-1} (Gruber et al., 2023). It has to be noted, as stated above, that there are still uncertainties in the surface-based estimates, due to the indirect approach that needs to incorporate the riverine flux, which has large uncertainties, and a possible skin-temperature correction (Dong et al., 2022; Watson et al., 2020). Specifically, Dong et al. (2022) suggested that the proper accounting of all temperature-related issues (e.g., skin correction) would increase the ocean uptake of the commonly used surface pCO_2 based products by +35% (0.6 Pg C yr⁻¹) for the period 1982 to 2020. If one was to use the skin correction of 0.6 Pg C yr⁻¹, as well as

through 2019, relative to January 2004, for different depth slabs: 0 to 150 m, 150 to 300 m, 300 m to 700 m, 700 m to 1500 m (from light blue to dark blue). The gray shading marks the uncertainty around the upper 1500 m. The dashed black line illustrates the estimated increase in C_{ant} based on ΔC_{ant} from 1800 to 2007 scaled to the same period, using a scaling factor α of 0.29.

2018

the 0.6 Pg C yr⁻¹ riverine flux, this would yield a total flux of 3.3 ± 0.6 Pg C yr⁻¹, which is remarkably close to our estimate of 3.2 ± 0.7 Pg C yr⁻¹.

Our estimate of the total increase in ocean sDIC of 51 ± 11 Pg C implies that from 2004 through 2019, the ocean sink accounted for $\sim 31\pm7\%$ of the total anthropogenic CO₂ emissions (here: from fossil fuel emissions and land-use change, Friedlingstein et al. (2022)). This uptake fraction is larger but within the uncertainties compared to the fraction reported by the Global Carbon Project based on ocean models and surface ocean pCO_2 products during the decade 2011 to 2020 ($26\pm4\%$, Friedlingstein et al. (2022)). As pointed out by Friedlingstein et al. (2022), within the Global Carbon Budget estimates, it is particularly the hindcast model-based estimates that indicate a smaller uptake. Similarly, Terhaar et al. (2022) used an emergent constraint approach to demonstrate that most CMIP models tend to take up too little CO_2 from the atmosphere. Although CMIP models differ from the hind-cast models used in the Global Carbon Budget, these findings further indicate that the models underestimate the oceanic carbon uptake, as also discussed by Hauck et al. (2020). Our interior ocean-based estimate thus supports the larger (mostly observationbased) estimates of the ocean carbon sink in the Global Carbon Budget, albeit within large uncertainties.

Another reference point is the oceanic accumulation of C_{ant} between 2004 and 2020. Lacking an estimate of the C_{ant} accumulation over the same period, we scale the estimates

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681 682

683

684

685

686

687

688

689

690

691

692

693

694

695

of Sabine et al. (2004) and Gruber et al. (2019) to this period, assuming a transient steady-state (see Section 2.4). We obtain a global increase of 44 ± 6 Pg C $(2.8\pm0.4 \text{ Pg C yr}^{-1})$ in C_{ant} (1800-2007 scaled to 2004-2019 with a scaling factor of 0.29) and 49 ± 6 Pg C (3.1 ±0.4 Pg C yr⁻¹) in C_{ant} (1994-2007, scaled to 2004-2019 with a scaling factor of 1.45). The estimates are remarkably close to our estimate of the increase in total sDIC (51 \pm 11 Pg C, i.e., 3.2 \pm 0.7 Pg C yr⁻¹). This suggests that we can largely attribute the reconstructed increase in the sDIC to the uptake of anthropogenic CO_2 from the atmosphere. Similarly, when only considering the domain of MOBO-DIC and without upscaling, we also find that the trend in MOBO-DIC (40 ± 5 Pg C, i.e., 2.5 ± 0.3 Pg C yr⁻¹) is close to the increase in C_{ant} over the same period and domain (35±4 Pg C, i.e., 2.2 ± 0.2 Pg C yr⁻¹, dashed line in Fig. 1), and also well within the uncertainties. Considering the proposed outgassing signal of C_{nat} (McNeil & Matear, 2013), this would have been reflected in a weaker trend in total sDIC than in C_{ant} ; however, we do not observe this during our study period. This finding is in-line with the recent review by Gruber et al. (2023) who also concluded that the trend in the oceanic carbon sink was primarily driven by the increasing uptake of C_{ant} and that the proposed loss of C_{nat} can at this stage not be conclusively quantified with observations.

Superimposed onto this positive long-term trend of sDIC, the reconstructions reveal substantial interannual variations and a weakening of the trend after ~ 2012 , especially in the deeper waters. The following sections will further discuss these variations and the weakening trend. We also dive deeper into the differences between the anthropogenic component and the total sDIC in the water column, revealing changes in the natural DIC pool. Additionally, we find a strong seasonal signal, most pronounced near the surface. We do not discuss the seasonal variations near the surface, as the seasonal cycle of DIC was explored in Keppler et al. (2020b).

5.2 Regional distribution of trends in sDIC, C_{ant} , and C_{nat}

The rate of the depth-integrated accumulation of sDIC is regionally strongly structured (Fig. 2a), with the highest rates of accumulation found in the North Atlantic south of Iceland, i.e., the Subpolar Gyre. There, the linear trend exceeds 1.5 mol $m^{-2} yr^{-1}$. An additional region with elevated rates of increase can be identified in the southern hemisphere between about 20°S and 45°S with typical accumulation rates of ~1 mol m⁻² yr⁻¹. The higher latitudes of the Southern Ocean, the tropical regions, the northern Indian, and particularly the North Pacific have considerably weaker depth-integrated changes in sDIC, typically 0.5 mol m⁻² yr⁻¹ or less. In some regions of the North Pacific, the depth-integrated sDIC even decreases over our study period. This vertical integral is a robust feature of our analysis as it is only weakly changing when removing trends within the water column that are not significant (compare Supporting Information Fig. S12 with Fig. 2a).

At each depth level, most of the trends in sDIC are statistically significant (95% confidence interval, see Supporting Information Section S7 and Fig. S12). This is also the case for the negative trends in the North Pacific. Further support comes from the existence of a comparable negative trend in the surface DIC reconstructions of the OceanSODA-ETHZ product (Gregor & Gruber, 2021), as demonstrated in Section 4.2 and Supporting Information Fig. S11. Thus, this negative signal in the North Pacific appears robust within our period and is not an artifact of our method.

Next, we examine the similarity between the rate of depth-integrated accumulation of sDIC and C_{ant} , which becomes even more evident when they are put side by side, irrespective of how we estimated the expected change in C_{ant} from 2004 through 2019. The patterns and magnitude of the depth-integrated accumulation of sDIC (Fig. 2a) and the two different estimates of C_{ant} (Fig. 2b,c) are to the first order approximately the same, as also evidenced by their high pattern correlation coefficient c = 0.56 and 0.63, between the trend in MOBO-

Figure 2. Maps of the column-integrated (upper 1500 m) (a) change in sDIC from 2004 through 2019 based on the linear trend, (b,c) change in C_{ant} scaled to the same period (2004 through 2019), and (d,e) the anomalous change (i.e., approximately the change in C_{nat}) from 2004 through 2019, estimated from the difference between the change in the MOBO-DIC inventory [illustrated in (a)], and the change in the C_{ant} inventory, scaled to the same period as (a) [illustrated in (b and c)]. For the combined estimate of C_{ant} by Sabine et al. (2004) (1800 to 1994) and Gruber et al. (2009) (1994 to 2007) (b,d) and for the estimate of C_{ant} by Gruber et al. (2009) (1994 to 2007; c,e). Scaling on the basis of the transient steady-state model (anom = Δ MOBO-DIC – $\alpha \cdot \Delta C_{ant}$, $\alpha = 0.29$ for the period 1800-2007 and $\alpha = 1.45$ for the period 1994-2007). See Supporting Information Fig. S12 for the trends in MOBO-DIC on individual depth levels.

DIC and the scaled ΔC_{ant} from the combined estimate by Sabine et al. (2004) and Gruber et al. (2019), and the estimate by Gruber et al. (2019), respectively. For example, we observe in all fields a large increase in the North Atlantic and a broad band of enhanced accumulation in the mid-latitudes of the Southern hemisphere. Also present in all fields is the weaker signal in the mid-latitude Southern Ocean. This further supports the conclusion that most of the column-integrated change in sDIC can be attributed to the increase in C_{ant} during this period.

696

697

698

699

700

701

manuscript submitted to Global Biogeochemical Cycles However, there are also several notable differences, discernible when we subtract the 703 estimated anthropogenic component (i.e., ΔC_{ant}) from the reconstructed change in sDIC 704 (Fig. 2d,e). This difference can be interpreted as the change in the natural oceanic CO_2 705 component of DIC, i.e., ΔC_{nat} , although given our steady-state assumption when estimating 706 ΔC_{ant} , this difference can also contain an element of the non-steady-state, i.e., climate 707 variability induced, component of ΔC_{ant} . The North Pacific stands out as the region with 708 the biggest loss in C_{nat} . In addition, C_{nat} is lost in the upwelling region of the Atlantic 709 sector of the Southern Ocean and the Subtropical Gyre of the North Atlantic. These losses 710 of C_{nat} are counter-balanced by gains of C_{nat} in the tropics and the Indo-Pacific sector 711 of the Southern Ocean. Furthermore, in the North Atlantic Subpolar Gyre, a region of 712 strong uptake of C_{ant} , we also observe an increase in C_{nat} . Integrating ΔC_{nat} yields a total 713 increase of 0.4 ± 0.8 Pg C yr⁻¹, and 0.1 ± 0.8 Pg C yr⁻¹, for C_{nat} based on the combined 714 estimate (Sabine et al., 2004; Gruber et al., 2019), and the estimate by Gruber et al. (2019), 715 respectively. Given the lack of statistical significance, we conclude that we cannot detect a 716 global change in C_{nat} during our study period. 717 Nonetheless, the reduction of ΔC_{nat} in the North Pacific stands out. We link this 718 719 720 721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

change to the phasing of the Pacific Decadal Oscillation (PDO) as it shifted between 2004 and 2019 from positive to negative. While negative PDO regimes are associated with a shallow thermocline in the Kuroshio Extension, which results in deep mixing and cooler SSTs in the North Pacific, positive PDO regimes are associated with warmer SSTs (Mantua & Hare, 2002). Thus, we speculate that during our analysis period, the shoaling of the thermocline in the North Pacific brought DIC stored at depth to the surface, allowing it to outgas, leading to an overall loss of DIC in this region. We expect that the opposite would occur during positive phases of the PDO so that the net change over multiple decades would be close to zero, and thus not impact the long-term trend. To test this hypothesis, we plotted the trend in the surface sDIC from OceanSODA-ETHZ (Gregor & Gruber, 2021) over their entire study period (1985 through 2018). Over that extended period, we do not observe negative trends in surface sDIC in the North Pacific (not shown), indicating that the observed negative trend in the North Pacific sDIC and C_{nat} between 2004 and 2019 is not a long-term signal. The loss of C_{nat} in the North Pacific during our analysis period is partially balanced by a gain in C_{nat} in most parts of the Indo-Pacific, especially in the Western tropical Pacific. We find that this signal is associated with the phasing of the El Niño Southern Oscillation (ENSO), as further discussed in Supporting Information Fig. S13. We speculate that over a longer period than our 16 years, this signal of increased C_{nat} in the Western tropical Pacific would also be dampened.

Similarly, we link the changes in C_{nat} in the North Atlantic to the phasing of the Atlantic Multidecadal Oscillation (AMO; Kerr (2000) as between 2004 and 2019, the AMO index moved from positive to negative (see https://climatedataguide.ucar.edu/ climate-data/atlantic-multi-decadal-oscillation-amo). Negative AMO phases are associated with increased vertical mixing in the North Atlantic Subpolar Gyre, and thus, an increase of upper ocean DIC and C_{nat} in this region (Breeden & McKinley, 2016). Concurrently, in the North Atlantic Subtropical Gyre, negative AMO phases are associated with a decrease in DIC and C_{nat} in this region due to changes in the temperature affecting the solubility of CO_2 . In the tropical Atlantic, the increase in C_{nat} during our study period might be associated with teleconnections from the AMO phasing. The loss of C_{nat} in the South Atlantic is in line with the findings by Keppler and Landschtzer (2019) who reported a weakening of the Southern Ocean carbon sink in the Atlantic sector since ~ 2012 . They linked this weakening to shifts in sea level pressure and associated changes in surface winds. We note that these links between changes in C_{nat} and the PDO and the AMO are speculative at this point, as the relatively short temporal extent of MOBO-DIC (16 years) prevents us from robustly concluding on the effect of multi-decadal modes of variability.

Fig. 3 reveals how the trend in sDIC varies with depth at the scale of entire ocean basins split into latitude bands (black line). Near the surface, sDIC is reconstructed to have increased, on average by about 0.6 μ mol kg⁻¹ yr⁻¹, with some regions having a higher accumulation (e.g., 0.8 μ mol kg⁻¹ yr⁻¹ in the North Atlantic) and other regions less (e.g., 0.3 μ mol kg⁻¹ yr⁻¹ in the North Pacific). In all regions, the trend in sDIC increases between the mixed layer and the intermediate waters and then decreases with depth below that, reaching values of around 0.2 μ mol kg⁻¹ yr⁻¹ at 1500 m. We observe the largest increase in sDIC in the Atlantic between ~200 m and 500 m (~0.9 μ mol kg⁻¹ yr⁻¹).

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802 803

804

805

806

807

Comparing the temporal trends in sDIC with the estimated changes in C_{ant} (blue and red lines in Fig. 3) highlights strong similarities but also distinct differences. Near the surface, sDIC increased less than C_{ant} during our study period. This difference is significant in all regions except for the Southern Ocean and North Atlantic. In the deeper ocean, the difference between the trend in sDIC and ΔC_{ant} is not significant in the Southern Ocean, North Pacific, tropical Indian Ocean, and the South Atlantic, while in the other regions, the trend in sDIC tends to be larger than the two estimates of ΔC_{ant} . The differences between the trends in sDIC compared to those in C_{ant} imply a loss of C_{nat} in the upper ocean and a gain of C_{nat} in the ocean's interior below a few hundred meters depth. Combined with the lack of an overall change in C_{ant} , this suggests a strong internal redistribution of oceanic C_{nat} over our analysis period.

We tested the robustness of our inferred ocean internal redistribution of C_{nat} by comparing them to data from repeat hydrographic lines obtained as part of the Global Ocean Ship-based Hydrographic Program (GO-SHIP; Talley et al. (2016)). In Supporting Information Figure S14, we compare the change in DIC between different occupations of the same line with the reconstructed change in MOBO-DIC at the same locations over the same period, and also with the changes in C_{ant} scaled to the same period. We find that the change in DIC (both at the repeated GO-SHIP tracks and in MOBO-DIC) differs substantially from the ΔC_{ant} profiles, in a similar way as demonstrated when we average over large regions in Fig. 3. This adds a second line of evidence that the vertical redistributions of C_{nat} that we discuss here are not artifacts from our method but are also directly visible in the ship measurements from the GO-SHIP program. We note that the magnitude of the trend in DIC is larger when only considering the grid cells of the GO-SHIP tracks (Supporting Information Fig. S14), than when averaging over large regions (Fig. 3), due to a tendency for opposing trends canceling each other when the profiles are averaged over large regions.

The similarities and differences in the vertical distribution of the trends in sDIC, C_{ant} , and C_{nat} become even more evident when analyzing zonal mean sections of these components (Fig. 4). Due to methodological constraints, there are some discontinuities at 500 m in the MOBO-DIC derived sDIC (Fig. 4a-c), which are associated with boundaries generated by the depth slabs. Aside from that, the trend in sDIC and ΔC_{ant} (Fig. 4d-f) are very similar, as noted above for the mean profiles. This figure again highlights the loss of C_{nat} (Fig. 4g-i) at the surface, except in the North Atlantic. We also observe a loss of C_{nat} in the North Pacific, extending down to 1500 m but most pronounced in the upper ~800 m. The northern high latitudes tend to lose C_{nat} at depth, while the low latitudes tend to gain C_{nat} at depth. Overall, the redistribution of C_{nat} occurs both horizontally, as demonstrated in Fig. 2, and vertically (Fig. 3 and 4), but as pointed out above, the signal in C_{nat} is within the uncertainty bounds.

We cannot identify the potential reasons for this redistribution, but the upper ocean loss of C_{nat} may be at least partially driven by the warming of the ocean, which is strongest in the upper ocean (IPCC, 2021). In addition, such a redistribution pattern is reminiscent of the impact of the ocean's biological pump, where an increased efficiency of this pump would lead to a depletion of C_{nat} in the upper ocean and an accumulation at depth. As we observe this pattern most prominently in the tropics, we speculate that biology may be driving the change in sDIC here. Conversely, as we already hypothesized above, the other

Figure 3. Vertical profiles of the mean trend in subregions for sDIC estimated by MOBO-DIC (black) and ΔC_{ant} from 1800 to 2007 scaled to the period 2004 through 2019 (blue), and from 1994 to 2007, scaled to 2004 through 2019 (red). The uncertainty of the trend in sDIC, based on the standard deviation across the trend in the 15 ensemble members, is illustrated in shading. The uncertainty of the trend in ΔC_{ant} , based on the standard deviation in the latitude-longitude space, is illustrated in shading. Separately for the Southern Ocean (a), Indian Ocean (d,g), Pacific (b,e,h), Atlantic (c,f,i), in the northern temperate regions (until 23°N, b,c), the tropics (23°N to 23°S, d-f), and in the southern temperate regions (from 23°S to 40°S, g-i). The map at the bottom indicates the limits of the ocean basins in color, and the climatic regions are delimited by black lines.

regions, including the North Pacific, North Atlantic, and Southern Ocean are likely driven by physical changes.

It should also be noted that the vertical profile in the trend is strongly influenced by interannual variations, such as variations in the thermocline and surface outgassing. Thus, the signal in the mixed layer is prone to large interannual to decadal variations, which are

0

-0.5 0

Indian

0

500

1000

1500 0

500

1000

1500 0

500

1000

1500 -65

illustrates the boundaries of the basins.

0 25 -65

-1.5 -1

AsDIC

∆Cant Depth (m)

∆sDIC - ∆C_{ant} ≈ ∆C_{nat}

Figure 4.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

80

5.3 Interannual variability at global and basin-scale

The interannual variability of sDIC, defined here as the standard deviation in time (seasonal cycle and trend removed), is rather small in our product, especially when compared to the magnitude of the trend (previous section) and the amplitude of the seasonal cycle (Keppler et al., 2020b). With a global mean temporal standard deviation of 2 μ mol kg⁻¹ at 150 m (the depth level with the largest mean standard deviation), compared to a global mean uncertainty of 18 μ mol kg⁻¹ at 150 m, the interannual variability is well within the product uncertainty of MOBO-DIC in most parts of the ocean. However, as highlighted in Section 4.3, MOBO-DIC likely underestimates the interannual variability.

Nevertheless, some clear regional signals of the interannual variability emerge (Fig. 5): the largest interannual signal is generally in the thermocline region (~ 150 m), while in the mixed layer and below 700 m, the interannual variability is minimal. The equatorial Pacific stands out as a region with the largest variance, while we observe very little interannual variability in the Southern Ocean, a region with large decadal variability in the air-sea CO₂ flux estimates (Le Qur et al., 2007; Landschtzer et al., 2015; Keppler & Landschtzer, 2019). A recent study has suggested that the decadal variations of the air-sea CO₂ fluxes in the Southern Ocean may be overestimated in the mapped surface estimates (Gloege et al., 2021); however, the strongest variations occur around the year 2000 (see, e.g., Friedlingstein et al. (2022)), i.e., before the start of our time-series here.

Figure 5. Zonal mean sections of the interannual variability of sDIC, defined as the standard deviation of the time-dimension of sDIC (detrended, seasonal cycle smoothed with a 12-month running mean) for the Indian (a), Pacific (b), and Atlantic Oceans (c). See the map at the bottom right of Fig. 4 for the boundaries of the basins.

We further illustrate the nature of the mean vacillations of the vertically integrated sDIC (upper 1500 m) for large subregions in Fig. 6. The most dominant interannual variations are found in the Pacific, where we see a steep increase in sDIC between 2010 and 2014 in the tropics. The northern temperate Pacific also stands out: Here, the trend in sDIC is initially weak until 2010, increases until 2014, and then we observe a negative trend until the end of the time series in December 2019. Both in the northern and southern temperate regions of the Atlantic, the sDIC trend has weakened since around 2012. In contrast, averaged over the whole Southern Ocean, we find very few interannual variations here. Similarly, the Indian Ocean, the South Pacific, and the tropical Atlantic all vary little interannually in the upper 1500 m when averaging over these areas.

We link the sDIC increase in the tropical Pacific at least partially to a shift from La Niñas (especially in 2008 and 2011) to El Niños (especially in 2015 and 2019, see Supporting Information Fig. S13). The other ENSO-related signals during our study period are considerably weaker and seem mostly dampened when considering the whole tropical Pacific. The large variation in the North Pacific is likely to be influenced by the phasing of the PDO, but may also have an ENSO-related teleconnection. We find that the weakening of the vertically integrated sDIC around 2012, illustrated in Fig. 1, stems largely from the high latitude South Atlantic and the tropical Pacific. The weakening of the sink in the high latitude South Atlantic is in line with the findings by Keppler and Landschtzer (2019), who report a weakening of the CO₂ uptake in the Atlantic sector of the Southern Ocean around 2012. While this signal is not dominant when averaging over the whole Southern Ocean, this weakening sink around 2012 is also visible in the global changes in sDIC (Fig. 1), highlighting the important role of the Southern Ocean carbon uptake (here: specifically its Atlantic sector) globally. A longer time series is needed to

Figure 6. Timeline of the vertical integral (upper 1500 m) of sDIC relative to January 2004 (think solid lines) in the northern temperate regions (a), tropics (b), southern temperate regions (c), and the Southern Ocean. In a-c, separately for the Atlantic (orange), Pacific (purple), and Indian Ocean (green). Note that the y-axes differ in each subplot. Thick solid lines have the seasonal cycle smoothed with a 12-month moving average (first and last six months removed). The inserted map illustrates the boundaries of the subregions.

investigate if this is a long-term decline or part of multi-decadal oscillations, such as the AMO. We know from previous studies that this weakening may be due to changes in the circulation, as suggested by DeVries et al. (2017) or linked to atmospheric circulation, as proposed by Keppler and Landschtzer (2019). An alternative hypothesis for these changes is that volcanoes are the driving force for such sudden changes (McKinley et al., 2020). However, during our study period, no large volcanic eruptions occurred that may explain the observed signals.

860

861

862

863

864

865

6 Caveats and Uncertainties

867

868

869

870

871

872

873

874 875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

Given the sparsity of DIC observations, our product fills substantial observational gaps in time and space. However, our evaluation with independent data provides confidence in the robustness of the presented numbers within the uncertainty limits. Nonetheless, there are good reasons to conclude that MOBO-DIC tends to underestimate the trend and interannual variability. Although this underestimation is within the uncertainty limits, it could be significant when integrating in the water column (see Main Text Section 4 and Supporting Information Sections S5 and S6). Further research should be conducted on this, especially as more data becomes available with future GLODAP releases and BGC Argo data.

The uncertainties of the MOBO-DIC estimated sDIC at the level of a single grid cell are relatively large (global mean of 18 μ mol kg⁻¹) and are often larger than the signal in the trend or variability. As our mapping method minimizes the overall bias between the target data (i.e., the GLODAP DIC measurements) and the mapped estimate, we can assume that any local imprecisions average out when integrating or averaging over large areas. This means that MOBO-DIC is most robust when considering large areas, while analyses at single grid cells should be interpreted carefully, keeping in mind the uncertainty bounds. In this study, we present such integrals and averages over whole ocean basins.

We want to note that the linear trend analysis used to quantify and assess the longterm changes in DIC has its limitations, too. First, it is not a given that the increase in oceanic carbon is, in fact, linear. Second, the linear trends are based on a relatively short period of 16 years, and thus, the conditions of the start and end years tend to considerably affect the trend over such a short period (Fay & McKinley, 2013). Furthermore, decadal variations might also affect the linear trends. We found that, locally, some trends are not robust (see Supporting Information Fig. S12) but anticipate that our global trend estimate is robust within the uncertainty, as overestimates of the trend in some regions are likely to be balanced by underestimates elsewhere.

Our comparison with C_{ant} also relies on many assumptions. First, as there is not yet a published estimate of C_{ant} for the current period, we scaled previous estimates to our period, assuming a steady state (see Section 2.4). Further, our estimate of C_{nat} is based on the difference in the change in total sDIC and ΔC_{ant} . However, due to the steady-state assumption when estimating ΔC_{ant} , the difference may also contain an element of the nonsteady-state component of anthropogenic ΔC_{ant} . Thus, the analyses with C_{ant} and C_{nat} could be improved in the future by using a C_{ant} estimate of the same period.

7 Summary and Conclusions

This release of the Mapped Observation-Based Oceanic Dissolved Inorganic Carbon (MOBO-DIC) extends the climatological estimate by Keppler et al. (2020b) in time, thus giving insights into the spatiotemporal evolution of the ocean DIC stock at a monthly resolution from January 2004 through December 2019. With a spatial resolution of 1°, extending from 65°N to 65°S, and until 80°N in the Atlantic, and covering the entire upper and middle ocean (depths from 2.5 m to 1500 m on 28 uneven depth levels) this dataset provides a near-global view. We conducted an in-depth validation of our new data product, which considers sources of uncertainties from the measurements, representation errors, and uncertainties stemming from our mapping method. We trust that our estimate of DIC is robust within the uncertainty ranges provided (global mean uncertainty at the individual grid cell level of 18 μ mol kg⁻¹).

Our analysis of the trend in sDIC provides the first direct assessment of the changes in the total sDIC stock (natural + anthropogenic) based on observations. It should be noted that at large scales, the changes in sDIC and DIC are numerically equal because the trend in salinity is negligible once integrated vertically and over large regions (Cheng et al., 2020). Our estimate of the global increase of sDIC during our study period $(3.2\pm0.7 \text{ Pg C yr}^{-1})$ is approximately $31\pm7\%$ of the anthropogenic CO₂ emissions from fossil fuels and land use change during our study period (Friedlingstein et al., 2022). We find that this increase in sDIC is largely associated with the increase in anthropogenic carbon (C_{ant}) during this period ($2.8\pm0.4 \text{ Pg C yr}^{-1}$ or $3.1\pm0.4 \text{ Pg C yr}^{-1}$, depending on the method).

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

MOBO-DIC also allows for the first assessment of changes in natural oceanic carbon (ΔC_{nat}) by subtracting ΔC_{ant} from the changes in the total sDIC, yielding a statistically insignificant global mean ΔC_{nat} of $0.4 \pm 0.8 \text{ Pg C yr}^{-1}$ or $0.1 \pm 0.8 \text{ Pg C yr}^{-1}$, depending on the method used to estimate C_{ant} . Previous studies had suggested a potential outgassing of C_{nat} due to elevated sea surface temperatures (McNeil & Matear, 2013), which would affect the global climate. While the large uncertainties in MOBO-DIC and C_{ant} do not rule out such a net outgassing signal of C_{nat} , we observe no statistically detectable change in C_{nat} between 2004 and 2020, in-line with the recent review by (Gruber et al., 2023). Instead, our analysis reveals a redistribution of C_{nat} - a phenomenon that had not been previously investigated at a global scale. During our study period, the upper ocean appears to have mostly lost C_{nat} , while below that, large parts of the ocean increased in C_{nat} . The loss of C_{nat} near the surface could be driven by increased ocean temperatures, as proposed by IPCC (2021). The redistributions in the Pacific correspond to the phasing of ENSO and the PDO, while the redistributions in the North Atlantic correspond to the phasing of the Multidecadal AMO. However, at this stage, our study period from 2004 through 2019 is too short to robustly conclude on (multi-) decadal signals.

The interannual variability in sDIC is substantially weaker than the seasonal cycle and temporal trend in most parts of the ocean. However, it should be noted that MOBO-DIC likely underestimates the interannual variability. We find a mean standard deviation in time of detrended, deseasonalized sDIC at the depth level with the largest variability (150 m) of 2 μ mol kg⁻¹. Our results demonstrate that most of the global-scale variations in sDIC stem from the North and tropical Pacific, in correspondence with ENSO and the PDO, and to a lesser extent from the high latitude South Atlantic. We further find a weakening of the positive trend in the high-latitude South Atlantic around the year 2012. This signal is also visible in the global integral of sDIC, and future studies should examine the continued evolution of this signal as well as its drivers. The interannual variations are comparably weak in the other sectors of the Southern Ocean and the Indian Ocean.

We can now constrain the ocean carbon sink from surface measurements in combination with riverine flux estimates (previous studies) and based on the direct DIC measurements that reflect the changes in the DIC pool at timescales from sub-annual to While the surface-based estimates benefit from more inter-annual (this study). observations, large uncertainties are associated with such an indirect approach. The interior perspective suffers from considerably less data but, due to the direct approach, does not need a riverine flux adjustment or gas transfer parametrization. The two perspectives each have their strengths and weaknesses, so having both perspectives substantially improves our understanding and the quantification of the global ocean carbon sink. The two estimates are in good agreement $(3.2\pm0.7 \text{ Pg C yr}^{-1} \text{ and } 2.7\pm0.6 \text{ Pg C yr}^{-1}$ for the interior and surface perspective, respectively), despite being based on independent data (SOCAT vs. GLODAP). However, the surface-based estimates would be larger (i.e., closer to our estimate) when considering a larger riverine flux estimate (e.g., 0.8 ± 0.4 Pg C yr⁻¹ by Resplandy et al. (2018), compared to 0.6 ± 0.4 Pg C yr⁻¹ by Friedlingstein et al. (2022) used in this study). In addition, the agreement between the surface-based estimates and our interior ocean estimate would be even higher if the proposed temperature corrections were applied to the surface estimates. Specifically, Dong et al. (2022) estimated that accounting for these corrections would increase the ocean uptake of the surface pCO_2 based products by 0.6 Pg C yr⁻¹ from 1982 through 2020.

Further, within the Global Carbon Budget (Friedlingstein et al., 2022), the observationbased methods that estimate the carbon fluxes based on surface measurements are higher than the model-based estimates. Our analysis from the interior ocean perspective suggests that the true value likely lies closer to the observation-based surface estimates in the Global Carbon Budget than to the model-based estimates, as also suggested by Terhaar et al. (2022). Thus, the current approach of averaging all ocean carbon sink estimates from observations and models in the Global Carbon Budget could be revisited and improved to obtain the best estimate, e.g., by weighting the observation-based estimates stronger than the models.

Our new data product is available for the scientific community and can be used to further investigate the temporal changes in DIC and its effect on marine organisms. Potential further insights into the processes and drivers could be gained by prolonging the timespan and investigating the multi-decadal variations. Additionally, our product provides the basis to compare the decadal variations of observation-based DIC to the changes in the upper Meridional Overturning Circulation, which weakened in the 1980s, strengthened in the 1990s, and weakened again in the 2000s (DeVries et al., 2017). Similarly, further comparing the decadal variations of the Southern Ocean carbon sink (Le Qur et al., 2007; Landschtzer et al., 2015; Keppler & Landschtzer, 2019) to the variations in the DIC pool in this region could lead to important new insights on the global carbon cycle.

Acknowledgments

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

The research leading to these results has received funding from the European Community's Horizon 2020 Project under grant agreement no. 821003 (4C). This work was also sponsored by NSF's Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project under the NSF Awards PLR-1425989 and OPP-1936222, with additional support from NOAA and NASA. The authors are grateful for the Argo data collected and made freely available by the International Argo Program and the national programs that contribute to it (https://www.argo.ucsd.edu and https://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System. This publication uses Hawaii Ocean Time-series observations supported by the U.S. National Science Foundation under Grant OCE-1260164. It also used data from the Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM). Data were collected and made freely available by SOCCOM, funded by the National Science Foundation, Division of Polar Programs (NSF PLR-1425989), supplemented by NASA and by the International Argo Program and the NOAA programs that contribute to it. This work benefited from discussions with Birgit Klein (BSH), Jochem Marotzke (MPI-M), Johanna Baehr (UHH),and Jens D. Müller (ETHZ).

Data availability

The MOBO-DIC data product created during this study is freely available from NCEI/OCADS:

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0277099.html and should be cited as Keppler, Lydia; Landschützer, Peter; Lauvset, Siv K.; Gruber, Nicolas (2023). Mapped Observation-Based Oceanic Dissolved Inorganic Carbon Monthly fields from 2004 through 2019 (MOBO-DIC2004-2019) (NCEI Accession 0277099). [indicate subset used]. NOAA National Centers for Environmental Information. Dataset. https://doi.org/10.25921/z31n-3m26. Accessed [date].

The GLODAP DIC available ship measurements are at https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0237935/. The mapped available Argo-based fields of temperature and salinity are at https://sio-argo.ucsd.edu/RG_Climatology.html. The WOA-mapped climatologies of dissolved available silicic acid. nitrate. and oxygen are at https://www.nodc.noaa.gov/OC5/woa18/woa18data.html. The atmospheric pCO_2 based the GlobalView xCO_2 is available on at https://www.nodc.noaa.gov/ocads/oceans/SPC02_1982_present_ETH_SOM_FFN.html climatology DIC The annual of available mapped is at The https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0162565/mapped/. data from HOT, BATS, and Drake Passage are available time-series athttp://hahana.soest.hawaii.edu/hot/hot-dogs/bextraction.html, http://bats.bios.edu/bats-data/, and

https://www.nodc.noaa.gov/archive/arc0118/0171470/2.2/data/0-data/, respectively. The DIC estimated based on BGC-Argo floats in the Southern Ocean (SOCCOM floats) is available at http://soccompu.princeton.edu/www/index.html. The OceanSODA surface DIC fields are available at https://www.ncei.noaa.gov/ access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0220059. The MOBO-DIC monthly climatology is available at https://www.ncei.noaa.gov/access/ metadata/landing-page/bin/iso?id=gov.noaa.nodc\%3A0221526. The monthly (2020)available climatology of DIC by Broulln et al. at is The data for C_{ant} are available at https://doi.org/10.20350/digitalCSIC/10551. https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/ndp_100/

ndp100.html and https://www.ncei.noaa.gov/access/metadata/landing-page/bin/ iso?id=gov.noaa.nodc:0001644 for the periods 1800 to 1994 and 1994 to 2007, respectively. We use the bathymetry from Etopo2 (2001), and the Multivariate El Ni \tilde{n} o Index (MEI; Wolter and Timlin (2011); https://psl.noaa.gov/enso/mei/).

References

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

- Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., ... Xu, S. (2016). A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383-413. doi: 10.5194/ essd-8-383-2016
- Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., Gonzalez-Davila, M., ... Magdalena Santana-Casiano, J. (2014). A Time-Series View of Changing Surface Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification. Oceanography, 27(1), 126–141. doi: 10.5670/oceanog.2014.16
- Bittig, H. C., Maurer, T. L., Plant, J. N., Schmechtig, C., Wong, A. P. S., Claustre, H., ... Xing, X. (2019). A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage. Frontiers in Marine Science, 6. doi: 10.3389/fmars.2019.00502
- Bittig, H. C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N. L., Sauzde, R., ... Gattuso, J.-P. (2018). An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks. Frontiers in Marine Science, 5. doi: 10.3389/ fmars. 2018.00328
- Boyer, T. P., Garcia, H., Locarnini, R., Zweng, M., Mishonov, A. V., Reagan, J., ... Smolyar, I. (2018). World Ocean Atlas 2018. NOAA National Centers for Environmental Information. Dataset. Retrieved from https://www.ncei.noaa.gov/ archive/accession/NCEI-WOA18
- Breeden, M. L., & McKinley, G. A. (2016). Climate impacts on multidecadal pCO₂ variability in the North Atlantic: 19482009. Biogeosciences, 13(11), 3387-3396. doi: 10.5194/bg-13-3387-2016
- Brewer, P. G. (1978). Direct observation of the oceanic CO2 increase. *Geophysical Research* Letters, 5(12), 997–1000. doi: 10.1029/GL005i012p00997
- Broulln, D., Prez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., ... van Heuven, S. M. A. C. (2019). A global monthly climatology of total alkalinity: a neural network approach. Earth System Science Data, 11(3), 1109–1127. doi: 10.5194/essd-11-1109 -2019
- Broulln, D., Prez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., ... Kozyr, A. (2020). A global monthly climatology of oceanic total dissolved inorganic carbon:

a neural network approach. Earth System Science Data, 12(3), 1725-1743. doi: 10.5194/essd-12-1725-2020

Carter, B. R., Feely, R. A., Wanninkhof, R., Kouketsu, S., Sonnerup, R. E., Pardo, P. C.,
... Bullister, J. L. (2019). Pacific Anthropogenic Carbon Between 1991 and 2017.
Global Biogeochemical Cycles, 33(5), 597–617. doi: 10.1029/2018GB006154

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

- Carter, B. R., Feely, R. A., Williams, N. L., Dickson, A. G., Fong, M. B., & Takeshita, Y. (2018). Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate. *Limnology and Oceanography: Methods*, 16(2), 119–131. doi: 10.1002/ lom3.10232
- Chen, G.-T., & Millero, F. J. (1979). Gradual increase of oceanic CO 2. Nature, 277(5693), 205–206. doi: 10.1038/277205a0
- Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J. T., Li, G., ... Zhu, J. (2020). Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle. American Meteorological Society Section: Journal of Climate, 33(23), 10357– 10381. doi: 10.1175/JCLI-D-20-0366.1
- Clement, D., & Gruber, N. (2018). The eMLR(C*) Method to Determine Decadal Changes in the Global Ocean Storage of Anthropogenic CO2. Global Biogeochemical Cycles, 32(4), 654–679. doi: 10.1002/2017GB005819
- DeVries, T., Holzer, M., & Primeau, F. (2017). Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. *Nature*, 542(7640), 215–218. doi: 10.1038/ nature21068
- Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean Acidification: The Other CO2 Problem. Annual Review of Marine Science, 1(1), 169–192. doi: 10.1146/annurev.marine.010908.163834
- Dong, Y., Bakker, D. C. E., Bell, T. G., Huang, B., Landschtzer, P., Liss, P. S., & Yang, M. (2022). Update on the Temperature Corrections of Global Air-Sea CO2 Flux Estimates. *Global Biogeochemical Cycles*, 36(9), e2022GB007360. doi: 10.1029/2022GB007360
- Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., & Karl, D. M. (2009). Physical and biogeochemical modulation of ocean acidification in the central North Pacific. *Proceedings of the National Academy of Sciences of the United States of America*, 106 (30), 12235–12240. doi: 10.1073/pnas.0906044106
- Etopo2. (2001). ETOPO2, Global 2 Arc-minute Ocean Depth and Land Elevation from the US National Geophysical Data Center (NGDC). National Geophysical Data Center/NESDIS/NOAA/U.S. Department of Commerce. (Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [dataset]) doi: 10.5065/D6668B75
- Fay, A. R., Gregor, L., Landschtzer, P., McKinley, G. A., Gruber, N., Gehlen, M., ... Zeng, J. (2021). SeaFlux: harmonization of airsea CO₂ fluxes from surface pCO₂ data products using a standardized approach. *Earth System Science Data*, 13(10), 4693–4710. doi: 10.5194/essd-13-4693-2021
- Fay, A. R., & McKinley, G. A. (2013). Global trends in surface ocean pCO2 from in situ data. Global Biogeochemical Cycles, 27(2), 541–557. doi: 10.1002/gbc.20051
- Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., & Millero, F. J. (2004). Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans. *Science*, 305(5682), 362–366. doi: 10.1126/science.1097329
- Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., ... Zeng, J. (2022). Global Carbon Budget 2021. Earth System Science Data, 14(4), 1917–2005. doi: 10.5194/essd-14-1917-2022
- Friis, K., Krtzinger, A., Ptsch, J., & Wallace, D. W. R. (2005). On the temporal increase of anthropogenic CO2 in the subpolar North Atlantic. *Deep Sea Research Part I: Oceanographic Research Papers*, 52(5), 681–698. doi: 10.1016/j.dsr.2004.11.017
- Friis, K., Krtzinger, A., & Wallace, D. W. R. (2003). The salinity normalization of marine inorganic carbon chemistry data. *Geophysical Research Letters*, 30(2). doi: 10.1029/ 2002GL015898

This article is protected by copyright. All rights reserved.

GlobalView-CO2. (2011). Cooperative Atmospheric Data Integra- tion Project Carbon Dioxide. Dataset. Retrieved from https://gml.noaa.gov/ccgg/globalview/

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

- Gloege, L., McKinley, G. A., Landschtzer, P., Fay, A. R., Frlicher, T. L., Fyfe, J. C., ... Takano, Y. (2021). Quantifying Errors in Observationally Based Estimates of Ocean Carbon Sink Variability. *Global Biogeochemical Cycles*, 35(4), e2020GB006788. doi: 10.1029/2020GB006788
- Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L., Talley, L. D., ... Sarmiento, J. L. (2018). Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. *Geophysical Research Letters*. doi: 10.1029/2018GL078013
- Gregor, L., & Gruber, N. (2021). OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification. *Earth System Science Data*, 13(2), 777–808. doi: 10.5194/essd-13-777-2021
- Gregor, L., Kok, S., & Monteiro, P. M. S. (2017). Empirical methods for the estimation of Southern Ocean CO2: support vector and random forest regression. *Biogeosciences*, 14(23), 5551–5569. doi: 10.5194/bg-14-5551-2017
- Gruber, N. (1998). Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochemical Cycles, 12(1), 165–191. doi: 10.1029/97GB03658
- Gruber, N., Bakker, D. C. E., DeVries, T., Gregor, L., Hauck, J., Landschtzer, P., ... Mueller, J. D. (2023). Trends and variability in the ocean carbon sink. *Nature Reviews Earth and Environment*. doi: 10.1038/s43017-022-00381-x
- Gruber, N., Clement, D., Carter, B. R., Feely, R. A., Heuven, S. v., Hoppema, M., ... Wanninkhof, R. (2019). The oceanic sink for anthropogenic CO2 from 1994 to 2007. *Science*, 363(6432), 1193–1199. doi: 10.1126/science.aau5153
- Gruber, N., Gloor, M., Fletcher, S. E. M., Doney, S. C., Dutkiewicz, S., Follows, M. J., ... Takahashi, T. (2009). Oceanic sources, sinks, and transport of atmospheric CO2. *Global Biogeochemical Cycles*, 23(1). doi: 10.1029/2008GB003349
- Gruber, N., Sarmiento, J. L., & Stocker, T. F. (1996). An improved method for detecting anthropogenic CO2 in the oceans. *Global Biogeochemical Cycles*, 10(4), 809–837. doi: 10.1029/96GB01608
- Hauck, J., Vlker, C., Wang, T., Hoppema, M., Losch, M., & WolfGladrow, D. A. (2013). Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode. *Global Biogeochemical Cycles*, 27(4), 1236–1245. doi: 10 .1002/2013GB004600
- Hauck, J., Zeising, M., Le Qur, C., Gruber, N., Bakker, D. C. E., Bopp, L., ... Sfrian, R. (2020). Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget. *Frontiers in Marine Science*, 7, 852. doi: 10.3389/fmars.2020.571720
- Ilyina, T., Six, K. D., Segschneider, J., MaierReimer, E., Li, H., & NezRiboni, I. (2013). Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. Journal of Advances in Modeling Earth Systems, 5(2), 287–315. doi: 10.1029/2012MS000178
- IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (V. Masson-Delmotte et al., Eds.). Cambridge University Press.
- Jacobson, A. R., Mikaloff Fletcher, S. E., Gruber, N., Sarmiento, J. L., & Gloor, M. (2007). A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide:
 1. Methods and global-scale fluxes. *Global Biogeochemical Cycles*, 21(1). doi: 10.1029/2005GB002556
- Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O., & Schmittner, A. (1999). Global Warming and Marine Carbon Cycle Feedbacks on Future Atmospheric CO2. Science, 284 (5413), 464–467. doi: 10.1126/science.284.5413.464
- Keeling, R. (2005). Comment on "The Ocean Sink for Anthropogenic CO2". Science, 308(5729), 1743c–1743c. doi: 10.1126/science.1109620
- Keppler, L., & Landschtzer, P. (2019). Regional Wind Variability Modulates the Southern

Ocean Carbon Sink. Scientific Reports, 9(1), 1-10. doi: 10.1038/s41598-019-43826-y Keppler, L., Landschtzer, P., Gruber, N., Lauvset, S. K., & Stemmler, I. (2020a). Mapped Observation-Based Oceanic dissolved inorganic carbon (DIC), monthly climatology, from January to December (based on observations between 2004 and 2017), from the Max-Planck-Institute for Meteorology (MOBO-DIC_mpim). Dataset. NOAA National Centers for Environmental Information, NCEI Accession 0221526. Retrieved from https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id= gov.noaa.nodc%3A0221526

- Keppler, L., Landschtzer, P., Gruber, N., Lauvset, S. K., & Stemmler, I. (2020b). Seasonal Carbon Dynamics in the Near-Global Ocean. *Global Biogeochemical Cycles*, 34(12), e2020GB006571. doi: 10.1029/2020GB006571
- Kerr, R. A. (2000). A North Atlantic Climate Pacemaker for the Centuries. Science, 288(5473), 1984–1985. doi: 10.1126/science.288.5473.1984
- Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., ... Peng, T.-H. (2004). A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). *Global Biogeochemical Cycles*, 18(4). doi: 10.1029/2004GB002247
- Lacroix, F., Ilyina, T., & Hartmann, J. (2020). Oceanic CO₂ outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach. *Biogeosciences*, 17(1), 55–88. doi: 10.5194/bg-17-55-2020
- Landschtzer, P., Gruber, N., & Bakker, D. C. E. (2016). Decadal variations and trends of the global ocean carbon sink. *Global Biogeochemical Cycles*, 30(10), 1396–1417. doi: 10.1002/2015GB005359
- Landschtzer, P., Gruber, N., Bakker, D. C. E., & Schuster, U. (2014). Recent variability of the global ocean carbon sink. *Global Biogeochemical Cycles*, 28(9), 927–949. doi: 10.1002/2014GB004853
- Landschtzer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R., ... Zeng, J. (2013). A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. *Biogeosciences*, 10(11), 7793–7815. doi: 10.5194/bg-10-7793-2013
- Landschtzer, P., Gruber, N., Haumann, A., Rdenbeck, C., Bakker, D. C. E., van Heuven, S., ... Wanninkhof, R. (2015). The reinvigoration of the Southern Ocean carbon sink. *Science*, 349(6253), 1221–1224. doi: 10.1126/science.aab2620
- Landschtzer, P., Keppler, L., & Ilyina, T. (2022). Chapter 13: Ocean Systems. In Balancing Greenhouse Gas Budgets - Accounting for Natural and Anthropogenic Flows of CO2 and other Trace Gases (1st ed.). Elsevier.
- Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., ... Watelet, S. (2016). A new global interior ocean mapped climatology: the 1 1 GLODAP version
 2. Earth System Science Data, 8(2), 325–340. doi: 10.5194/essd-8-325-2016
- Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., ... Key, R. M. (2021). An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2021. Earth System Science Data, 13(12), 5565–5589. doi: 10.5194/ essd-13-5565-2021
- Lenton, A., & Matear, R. J. (2007). Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake. Global Biogeochemical Cycles, 21(2), GB2016. doi: 10.1029/ 2006GB002714
- Le Qur, C., Rdenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A., ... Heimann, M. (2007). Saturation of the Southern Ocean CO2 sink due to recent climate change. *Science*, 316(5832), 1735–1738. doi: 10.1126/science.1136188
- Lovenduski, N. S., Gruber, N., & Doney, S. C. (2008). Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. *Global Biogeochemical Cycles*, 22(3), GB3016. doi: 10.1029/2007GB003139
- Lovenduski, N. S., Gruber, N., Doney, S. C., & Lima, I. D. (2007). Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. *Global Biogeochemical Cycles*, 21(2), GB2026. doi: 10.1029/2006GB002900

This article is protected by copyright. All rights reserved.

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1206

1207

1208

1209

1210 1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1237

Mantua, N. J., & Hare, S. R. (2002). The Pacific Decadal Oscillation. Journal of Oceanography, 58(1), 35–44. doi: 10.1023/A:1015820616384

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

- Matear, R. J., & Hirst, A. C. (1999). Climate change feedback on the future oceanic CO2 uptake. *Tellus B: Chemical and Physical Meteorology*, 51(3), 722–733. doi: 10.3402/tellusb.v51i3.16472
- Matsumoto, K., & Gruber, N. (2005). How accurate is the estimation of anthropogenic carbon in the ocean? An evaluation of the DeltaC* method. Global Biogeochemical Cycles, 19(3). doi: 10.1029/2004GB002397
- Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., ... Roeckner, E. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. Journal of Advances in Modeling Earth Systems, 11(4), 998–1038. doi: 10.1029/2018MS001400
- McKinley, G. A., Fay, A. R., Eddebbar, Y. A., Gloege, L., & Lovenduski, N. S. (2020). External Forcing Explains Recent Decadal Variability of the Ocean Carbon Sink. AGU Advances, 1(2), e2019AV000149. doi: 10.1029/2019AV000149
- McNeil, B. I., & Matear, R. J. (2013). The non-steady state oceanic CO₂ signal: its importance, magnitude and a novel way to detect it. *Biogeosciences*, 10(4), 2219– 2228. doi: 10.5194/bg-10-2219-2013
- McNeil, B. I., & Sasse, T. P. (2016). Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. *Nature*, 529(7586), 383–386. doi: 10.1038/ nature16156
- Mikaloff Fletcher, S. E. M., Gruber, N., Jacobson, A. R., Doney, S. C., Dutkiewicz, S., Gerber, M., ... Sarmiento, J. L. (2006). Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. *Global Biogeochemical Cycles*, 20(2), GB2002. doi: 10.1029/2005GB002530
- Olsen, A., Key, R. M., Heuven, S. v., Lauvset, S. K., Velo, A., Lin, X., ... Suzuki, T. (2016). The Global Ocean Data Analysis Project version 2 (GLODAPv2) an internally consistent data product for the world ocean. *Earth System Science Data*, 8(2), 297– 323. doi: 10.5194/essd-8-297-2016
- Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., ... Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. *Nature*, 437(7059), 681–686. doi: 10.1038/nature04095
- Rdenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., ... Zeng, J. (2015). Data-based estimates of the ocean carbon sink variability first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). *Biogeosciences*, 12(23), 7251–7278. doi: 10.5194/bg-12-7251-2015
- Regnier, P., Resplandy, L., Najjar, R. G., & Ciais, P. (2022). The land-to-ocean loops of the global carbon cycle. *Nature*, 603(7901), 401–410. doi: 10.1038/s41586-021-04339-9
- Resplandy, L., Keeling, R. F., Rdenbeck, C., Stephens, B. B., Khatiwala, S., Rodgers, K. B., ... Tans, P. P. (2018). Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. *Nature Geoscience*, 1. doi: 10.1038/s41561-018 -0151-3
- Roemmich, D., & Gilson, J. (2009). The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. *Progress in Oceanography*, 82(2), 81–100. doi: 10.1016/j.pocean.2009.03.004
- Roobaert, A., Laruelle, G. G., Landschtzer, P., Gruber, N., Chou, L., & Regnier, P. (2019). The Spatiotemporal Dynamics of the Sources and Sinks of CO2 in the Global Coastal Ocean. *Global Biogeochemical Cycles*, 33(12), 1693–1714. doi: 10.1029/2019GB006239
- Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., ... Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. *Science*, 305(5682), 367–371. doi: 10.1126/science.1097403
- Sabine, C. L., & Gruber, N. (2005). Response to Comment on "The Ocean Sink for Anthropogenic CO2". Science, 308(5729), 1743–1743. doi: 10.1126/science.1109949
 Sabine, C. L., Key, R. M., Johnson, K. M., Millero, F. J., Poisson, A., Sarmiento, J. L.,

... Winn, C. D. (1999). Anthropogenic CO2 inventory of the Indian Ocean. *Global Biogeochemical Cycles*, 13(1), 179–198. doi: 10.1029/1998GB900022

Sarmiento, J. L., & Gruber, N. (2002). Sinks for Anthropogenic Carbon. Physics Today, 55(8), 30–36. doi: 10.1063/1.1510279

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

- Sarmiento, J. L., & Gruber, N. (2006). Carbon Cycle, CO2, and Climate; the Anthropogenic Perturbation. In Ocean Biogeochemical Dynamics (pp. 399–417). Princeton University Press.
- Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., & Manabe, S. (1998). Simulated response of the ocean carbon cycle to anthropogenic climate warming. *Nature*, 393(6682), 245– 249. doi: 10.1038/30455
- Sarmiento, J. L., Le Qur, C., & Pacala, S. W. (1995). Limiting future atmospheric carbon dioxide. Global Biogeochemical Cycles, 9(1), 121–137. doi: 10.1029/94GB01779
- Sarmiento, J. L., & Sundquist, E. T. (1992). Revised budget for the oceanic uptake of anthropogenic carbon dioxide. *Nature*, 356(6370), 589–593. doi: 10.1038/356589a0
- Sasse, T. P., McNeil, B. I., & Abramowitz, G. (2013). A novel method for diagnosing seasonal to inter-annual surface ocean carbon dynamics from bottle data using neural networks. *Biogeosciences*, 10(6), 4319–4340. doi: 10.5194/bg-10-4319-2013
- Sharp, J. D., Fassbender, A. J., Carter, B. R., Johnson, G. C., Schultz, C., & Dunne, J. P. (2022). GOBAI-O₂: temporally and spatially resolved fields of ocean interior dissolved oxygen over nearly two decades. *Earth System Science Data Discussions*, 1–46. doi: 10.5194/essd-2022-308
- Talley, L., Feely, R., Sloyan, B., Wanninkhof, R., Baringer, M., Bullister, J., ... Zhang, J.-Z. (2016). Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. *Annual Review of Marine Science*, 8(1), 185–215. doi: 10.1146/annurev-marine-052915-100829
- Talley, L., Rosso, I., Kamenkovich, I., Mazloff, M. R., Wang, J., Boss, E., ... Sarmiento, J. L. (2019). Southern Ocean Biogeochemical Float Deployment Strategy, With Example From the Greenwich Meridian Line (GO-SHIP A12). Journal of Geophysical Research: Oceans, 124(1), 403–431. doi: 10.1029/2018JC014059
- Tanhua, T., Krtzinger, A., Friis, K., Waugh, D. W., & Wallace, D. W. R. (2007). An estimate of anthropogenic CO2 inventory from decadal changes in oceanic carbon content. *Proceedings of the National Academy of Sciences*, 104(9), 3037–3042. doi: 10.1073/pnas.0606574104
- Terhaar, J., Frlicher, T. L., & Joos, F. (2022). Observation-constrained estimates of the global ocean carbon sink from Earth System Models. *Biogeosciences Discussions*, 1–49. doi: 10.5194/bg-2022-134
- Torres, O., Kwiatkowski, L., Sutton, A. J., Dorey, N., & Orr, J. C. (2021). Characterizing Mean and Extreme Diurnal Variability of Ocean CO2 System Variables Across Marine Environments. *Geophysical Research Letters*, 48(5), e2020GL090228. doi: 10.1029/ 2020GL090228
- Turner, K. E., Smith, D. M., Katavouta, A., & Williams, R. G. (2022). Reconstructing ocean carbon storage with CMIP6 models and synthetic Argo observations. *Biogeosciences Discussions*, 1–29. doi: 10.5194/bg-2022-166
- van Heuven, S., Pierrot, D., Rae, J., Lewis, E., & Wallace, D. (2011). MATLAB Program Developed for CO2 System Calculations. Oak Ridge, Tennessee: ORNL/CDIAC-105b. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.
- Wallace, D. W. (1995). Monitoring global ocean carbon inventories. In Scientific Design for the Common Module of the Global Ocean Observing System and the Global Climate Observing System: An Ocean Observing System for Climate : Final Report of the Ocean Observing System Development Panel. Texas A&M University.
- Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., & McGillis, W. R. (2009). Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing. Annual Review of Marine Science, 1(1), 213–244. doi: 10.1146/annurev.marine.010908.163742
- Wanninkhof, R., Doney, S. C., Bullister, J. L., Levine, N. M., Warner, M., & Gruber,

N. (2010). Detecting anthropogenic CO2 changes in the interior Atlantic Ocean between 1989 and 2005. *Journal of Geophysical Research: Oceans*, 115(C11). doi: 10.1029/2010JC006251

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C., Landschtzer, P., ... Goddijn-Murphy, L. (2020). Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. *Nature Communications*, 11(1), 4422. doi: 10.1038/s41467-020-18203-3

Wolter, K., & Timlin, M. S. (2011). El Nio/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International Journal of Climatology, 31(7), 1074–1087. doi: 10.1002/joc.2336

Zickfeld, K., Fyfe, J. C., Saenko, O. A., Eby, M., & Weaver, A. J. (2007). Response of the global carbon cycle to human-induced changes in Southern Hemisphere winds. *Geophysical Research Letters*, 34(12). doi: 10.1029/2006GL028797

-33-

This article is protected by copyright. All rights reserved.