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Key Points:11

• From 2004 through 2019, the global oceanic dissolved inorganic carbon (DIC)12

pool increased at an average rate of 3.2±0.7 Pg C yr−1
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• Most of this increase is associated with the uptake of anthropogenic CO2,14

while natural CO2 is mostly redistributed within the ocean15

• The interannual variability of DIC is largest in the tropical Pacific Ocean16
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Abstract17

Several methods have been developed to quantify the oceanic accumulation of18

anthropogenic carbon dioxide (CO2) in response to rising atmospheric CO2. Yet, we still19

lack a corresponding estimate of the changes in the total oceanic dissolved inorganic20

carbon (DIC). In addition to the increase in anthropogenic CO2, changes in DIC also21

include alterations of natural CO2. Once integrated globally, changes in DIC reflect the22

net oceanic sink for atmospheric CO2, complementary to estimates of the air-sea CO223

exchange based on surface measurements. Here, we extend the MOBO-DIC machine24

learning approach by Keppler et al. (2020a) to estimate global monthly fields of DIC at 1◦25

resolution over the top 1500 m from 2004 through 2019. We find that over these 16 years26

and extrapolated to cover the whole global ocean down to 4000 m, the oceanic DIC pool27

increased close to linearly at an average rate of 3.2±0.7 Pg C yr−1. This trend is28

statistically indistinguishable from current estimates of the oceanic uptake of29

anthropogenic CO2 over the same period. Thus, our study implies no detectable net loss30

or gain of natural CO2 by the ocean, albeit the large uncertainties could be masking it.31

Our reconstructions suggest substantial internal redistributions of natural oceanic CO2,32

with a shift from the mid-latitudes to the tropics and from the surface to below ∼200 m.33

Such redistributions correspond with the Pacific Decadal Oscillation and the Atlantic34

Multidecadal Oscillation. The interannual variability of DIC is strongest in the tropical35

Western Pacific, consistent with the El Niño Southern Oscillation.36

1 Introduction37

The global oceanic dissolved inorganic carbon (DIC) pool is a powerful recorder of changes38

in the net exchange of carbon dioxide (CO2) across the air-sea interface, i.e., the strength39

of the net oceanic carbon sink. This net sink is the sum of a flux of natural carbon (Cnat)40

that reflects the exchange driven by changes in solubility, ocean circulation, mixing, and41

biological processes, and the flux of anthropogenic carbon (Cant) that corresponds to the42

anomalous flux of CO2 driven by the human-induced rise in atmospheric CO2 (McNeil &43

Matear, 2013; Gruber et al., 2023). When integrated globally, the sources and sinks of44

natural CO2 fluxes cancel each other out in a steady state as the ocean strives towards45

equilibrium with the overlaying atmosphere (Landschtzer et al., 2022). On the contrary, the46

observed increase in the net air-sea CO2 exchange is caused by anthropogenic CO2 emissions47

(Friedlingstein et al., 2022). An important exception is residual outgassing that reflects the48

balance between the input of carbon by rivers and the deposition of carbon on the seafloor49

(Sarmiento & Sundquist, 1992; Regnier et al., 2022). As long as this balance is maintained,50

this latter (i.e., natural) component does not leave an imprint on changes in DIC, so that51

changes in this pool are then directly attributable to the ocean interior accumulation or loss52

of both natural and anthropogenic CO2.53

Knowing the magnitude of the net oceanic sink for CO2 is crucial for closing the54

global carbon budget and its anthropogenic perturbation (Sarmiento & Gruber, 2002;55

Friedlingstein et al., 2022). The need is heightened by efforts such as the United Nations’56

global stocktake efforts57

(https://unfccc.int/topics/science/workstreams/global-stocktake), which58

require a more refined estimate of the changing ocean carbon content, connecting the59

surface and interior ocean, and demonstrating the total changes in DIC, as well as its60

spatial distribution. Finally, better global-scale constraints on the changes in oceanic DIC61

are of great interest to better document the progression of ocean acidification and better62

establish the connection between changes in seawater chemistry and biological impacts63

(Doney et al., 2009; Orr et al., 2005; Feely et al., 2004).64

In terms of observations, the net oceanic CO2 sink is at present primarily determined65

using measurements of the surface ocean partial pressure of CO2 (pCO2), which are mapped66

to the globe using various data interpolation methods (Landschtzer et al., 2014; Rdenbeck67
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et al., 2015; Fay et al., 2021; Gregor & Gruber, 2021). The mapped pCO2 is then used,68

in combination with the atmospheric pCO2 and the gas transfer velocity, to estimate the69

air-sea CO2 flux. However, this approach is subject to various uncertainties, such as data70

sparsity (Fay & McKinley, 2013), an ill-constrained gas transfer coefficient (Wanninkhof71

et al., 2009; Roobaert et al., 2019), and a potential offset in the pCO2 measurements as72

they are not directly taken at the cool skin surface (Watson et al., 2020). Furthermore,73

the steady-state outgassing of river-derived carbon needs to be subtracted from the inferred74

flux to obtain the anthropogenic flux relevant to the global carbon budget. Estimates for75

this riverine flux range from 0.23 Pg C yr−1 (Lacroix et al., 2020) and 0.45±0.18 Pg C yr−1
76

(Jacobson et al., 2007) to 0.78±0.41 Pg C yr−1 (Resplandy et al., 2018), with the most77

recent review by Regnier et al. (2022) suggesting a value of 0.65±0.3 Pg C yr−1. This range78

and the associated uncertainties add further uncertainty to the pCO2 derived estimates of79

the net carbon uptake by the global ocean.80

Confidence in quantifying this net uptake could be strengthened if constrained81

independently through the direct determination of changes in the global ocean DIC82

content. Nevertheless, this is a challenging task, owing to the sparsity of observations, the83

substantial background DIC pool of ∼37,000 Pg C (Keppler et al., 2020b), and the many84

physical and biological processes that govern the distribution of DIC in the ocean85

(Sarmiento & Gruber, 2006). A very successful approach to overcome this challenge has86

been to only focus on the interior ocean’s accumulation of the Cant component (Wallace,87

1995; Tanhua et al., 2007). Under the assumption that the ocean is in a near steady state,88

several methods have been developed to determine the changes in Cant either from single89

surveys of DIC (Brewer, 1978; Chen & Millero, 1979; Gruber et al., 1996), or from repeat90

hydrography programs (Friis et al., 2005; Clement & Gruber, 2018; Carter et al., 2019).91

The application of these methods has permitted the oceanographic community to quantify92

the increase in the Cant inventory, both since preindustrial times (Gruber, 1998; Sabine et93

al., 1999) and for the past few decades (Friis et al., 2005; Wanninkhof et al., 2010; Carter94

et al., 2019), with the global studies providing invaluable constraints for the global budget95

of Cant (Sabine et al., 2004; Gruber et al., 2019).96

Although these global Cant estimates have proven to be extremely valuable for97

constraining the global carbon budget and hence the fate of the emitted anthropogenic98

CO2, they have not been able to fully address whether the steady-state assumption or the99

assumption of a small Cnat signal is justified. Questions were raised early on, especially in100

the context of ocean warming (Keeling, 2005; Sabine & Gruber, 2005), which many models101

suggest will lead to a loss of CO2 from the ocean (Joos et al., 1999; Sarmiento et al., 1998;102

Matear & Hirst, 1999). Later, using a combination of different model and103

observation-based methods, McNeil and Matear (2013) invoked the presence of a104

decadal-scale outgassing signal of Cnat, but without being able to support this conjecture105

with direct observations. Dedicated modeling studies also suggest that the ocean might106

have lost Cnat in recent decades, e.g., in response to the trends in the Southern Annular107

Mode (Le Qur et al., 2007; Lenton & Matear, 2007; Zickfeld et al., 2007; Hauck et al.,108

2013; Lovenduski et al., 2008, 2007). In their global study on the increase in anthropogenic109

CO2 between 1994 and 2007, Gruber et al. (2019) speculated that perhaps as much as110

5 Pg C of Cnat might have been lost from the ocean over this period. A recent review by111

Gruber et al. (2023) further assessed the role of the non-steady state and the associated112

potential loss of Cnat. Conversely, enhanced lateral transport of natural carbon from the113

land could yield a gain of Cnat in the ocean (Regnier et al., 2022). Similarly, changes in114

the circulation or biological productivity could cause an anomalous uptake or release of115

CO2 from the atmosphere, altering the total stock of Cnat.116

As the arguments for potential changes in Cnat accumulate, the need to constrain117

the changes in the total DIC pool increases, as this permits to assess the changes in both118

natural and anthropogenic CO2. When doing so, one needs to also consider that even if119

the global-scale changes in the natural CO2 pool might be small, this pool is subject to120
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strong redistributions within the ocean, associated with changes in circulation, shifts in121

ocean fronts, and changes in biological productivity, causing locally large changes in DIC122

(Clement & Gruber, 2018). Such changes are commonly seen when comparing the DIC123

distributions between two occupations of a particular hydrographic section (Wanninkhof124

et al., 2010; Carter et al., 2019). They are also expected in the context of interannual125

variability, especially in regions with large vertical undulations of the thermocline, and126

hence also the “carbocline,” i.e., the strong vertical gradient in DIC. Such redistributions127

of DIC within the ocean not only pose a challenge for the detection of global-scale changes128

in the DIC pool, but they also potentially threaten organisms, as spatial redistributions of129

DIC might cause more rapid local changes in ocean acidification and, perhaps, a more rapid130

reaching of critical thresholds (McNeil & Sasse, 2016).131

Currently, no sensor technology exists that can operationally measure DIC in situ.132

Thus, we must rely on physical seawater samples collected and analyzed during ship-based133

surveys and programs (Talley et al., 2016; Bates et al., 2014), strongly limiting the coverage134

and the sampling frequency. Most of these DIC measurements and the associated ancillary135

data are compiled and subjected to secondary quality control by the Global Ocean Data136

Analysis Project (GLODAP; Olsen et al. (2016); Key et al. (2004)). A recent version137

(GLODAPv2.2021) contains over one million measurements from across the global ocean,138

spanning measurements from 1972 to 2020 (Lauvset et al., 2021). Most of the measurements139

contained within GLODAP stem from repeat hydrography programs, where the same set140

of stations along long lines are revisited at roughly decadal intervals (Talley et al., 2016).141

In addition to GLODAP, some long-term time-series stations provide information on the142

temporal variability in the interior ocean at a few locations, including the Hawaii Ocean143

Timeseries (HOT; Dore et al. (2009)) and the Bermuda Atlantic Timeseries Study (BATS;144

Bates et al. (2014)). More recently, Argo floats equipped with biogeochemical (BGC) sensors145

that measure pH, salinity, and other variables, supplement the ship data. Using these float146

measurements and some empirical relationships to infer alkalinity, DIC can be estimated147

(Carter et al., 2018; van Heuven et al., 2011). However, this method has much larger148

uncertainties than the ship data (Bittig et al., 2018), and to date, the available BGC-Argo149

float data are largely limited to the Southern Ocean, as part of the Southern Ocean Carbon150

and Climate Observations and Modelling project (SOCCOM; Talley et al. (2019)), while151

the global ocean BGC-Argo array is still in its early stages (Bittig et al., 2019).152

In parallel to the efforts in combining and unifying carbon cycle observations (Olsen153

et al., 2016; Bakker et al., 2016), a second branch related to big data analysis based on154

machine learning has emerged. Keppler et al. (2020b) adopted a cluster-regression approach155

previously applied to reconstruct the air-sea CO2 exchange (Landschtzer et al., 2013, 2014)156

and extended it to map a monthly climatology of DIC in the upper 2000 m of the near-157

global ocean, i.e., Mapped Observation-Based Oceanic DIC (MOBO-DIC; Keppler et al.158

(2020a)). Similarly, Broulln et al. (2020) developed a single-step machine learning approach159

to map the monthly climatology of interior DIC at a global scale. In addition, a recent160

study has mapped out the temporal evolution of DIC globally (Gregor & Gruber, 2021),161

but this approach was limited to the documentation of variations at the sea surface. These162

studies revealed the feasibility of reconstructing the DIC content from observations at the163

global scale. In addition, using CMIP6 models and synthetic Argo data, Turner et al. (2022)164

demonstrated very recently that interior temperature and salinity data are well suited to165

reconstruct interior DIC fields and their variability. However, they have not yet mapped166

the interior ocean DIC with real-world Argo observations. Further, Sharp et al. (2022)167

successfully mapped monthly fields of interior ocean dissolved oxygen at a global scale, using168

a machine learning approach. However, mapped estimates of interior observation-based169

DIC remain limited to seasonal climatologies (Keppler et al., 2020b; Broulln et al., 2020)170

or the surface (Gregor & Gruber, 2021), and reconstructions of the trend and interannual171

variability of the upper ocean total DIC at the global scale based on direct observations are172

still lacking.173
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To fill this gap, we use the MOBO-DIC approach and extend the monthly climatology of174

DIC by Keppler et al. (2020b) to resolve monthly global DIC fields from 2004 through 2019175

(i.e., January 2004 through December 2019). The temporal extent of our reconstructions176

is primarily determined by the availability of temperature and salinity fields from the Argo177

program that we use as key predictors. Our new DIC product is mapped at a monthly178

resolution on a 1◦×1◦ grid, from 65◦N to 65◦S, and reaching 80◦N in the Atlantic (see179

Supporting Information Fig. S1), extending from 2.5 m to 1500 m depth. Subsequently,180

we investigate the trend and interannual variability of the interior oceanic DIC at a global181

scale and put these changes into the context of the ongoing accumulation of anthropogenic182

CO2 in the ocean’s interior and from this, infer the changes in the natural CO2 pool.183

2 Data and Methods184

2.1 Cluster-regression185

We adopt the two-step neural network MOBO-DIC approach introduced by Keppler186

et al. (2020b) to map the sparse DIC observations to the (near) global ocean at monthly187

resolution for the period January 2004 through December 2019. Here, we present a188

summary of the most important features and the main changes compared to the189

climatological approach taken by Keppler et al. (2020b). Our approach first clusters the190

ocean into regions of similar properties using self-organizing maps (SOM) and then applies191

a feed-forward neural network (FFN) in each cluster to reconstruct a physical relationship192

between a set of driver variables and the target DIC data. This cluster-regression193

approach does not require information about the measurement location, a feature that194

separates it from many other mapping approaches (Sasse et al., 2013; Gregor et al., 2017;195

Bittig et al., 2018; Broulln et al., 2019, 2020). Thus, our regression method is solely based196

on the physical and biogeochemical relations between the predictor and target variables.197

Not using the measurement location as a predictor permits our method to benefit from198

information obtained in other places within each cluster, where predictor and target data199

are similarly related. Due to data availability (silicic acid and nitrate are only available in200

the upper 500 m) and the presence of different processes near the surface and below, we201

run the method separately for two depth slabs: from 2.5 m to 500 m and from 500 m to202

1500 m. We take the mean of the two estimates at 500 m to minimize boundary problems203

between the two depth slabs. This approach does not eliminate all discontinuities, but204

they are well within the uncertainty limits of the method.205

In the first step, we use a SOM, i.e., a type of unsupervised machine learning, to206

determine clusters. Following Keppler et al. (2020b), we use six clusters in the upper 500 m207

and four between 500 m and 1500 m. We tested various set-ups, including different numbers208

of clusters, and found that this number of clusters leads to the smallest overall error in the209

DIC reconstruction. To avoid boundary problems inherent in cluster-regression approaches,210

we adjust the original method by creating an ensemble of SOM clusters, following the211

approach introduced by Gregor and Gruber (2021). To this end, we performed the SOM-212

step three times, where the DIC input has a different weight ranging from 2 to 4 in each run.213

The resulting SOM clusters vary mostly around the boundaries (see Supporting Information214

Fig. S2). In the second step, we run an FFN for each SOM cluster. Our FFN network215

architecture consists of 8 neurons in the hidden layer of the FFN, as this setup results in216

the most robust output based on a comparison between the mapped output and the original217

training data.218

To avoid overfitting, we use 80% of the input data to train the network and the219

remaining 20% for internal cross-validation. As the training and validation data are220

separated randomly, the output from the FFN is slightly different each time it is run. For221

each SOM setup, we run the FFN five times, where each time, the data is separated222

differently into training and validation data to create an ensemble of outputs. Thus, our223

ensemble comprises 15 members (three SOM setups, each with five FFN runs). The final224
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reported data are the mean across the ensemble, and the standard deviation across the225

ensemble represents the uncertainty linked to the weighting of the SOM clusters and the226

random assignment of training and validation data (hereafter referred to as prediction227

uncertainty, see Supporting Information Fig. S3). We smooth the ensemble mean fields at228

each depth level by taking the running mean with a window size of three grid cells in each229

horizontal direction (latitude and longitude) and the temporal dimension.230

Some runs produced outputs with unlikely values, e.g., considerably larger or smaller231

than the measured variables in GLODAP. We attribute this to the random assignment of232

training and validation data, where some data subsets are unsuitable for training. Such runs233

with unlikely values occurred both with the GLODAP training data and with synthetic data,234

so it cannot be attributed to noise in the observations. We have tried many different setups235

of the network to eliminate this issue. However, with the current training data, we were236

unable to resolve it. Thus, when an output results in values that are more than 5 standard237

deviations larger or smaller than the observed data in GLODAP (i.e., outside of the range238

1639 to 2575 µmol kg−1 and 1898 to 2629 µmol kg−1, for the upper and lower depth slab,239

respectively), the entire ensemble member was discarded and re-run with the same setup,240

but with a different sub-set of training data. We trust that removing the runs with unlikely241

values, in addition to the bootstrapping approach, yields a robust estimate.242

2.2 Data and Domain243

As input to the SOM, we use monthly mapped fields of temperature and salinity based244

on Argo float measurements (Roemmich & Gilson, 2009) and an annual-mean climatology245

of DIC (Lauvset et al., 2016). We weigh the DIC input stronger than the physical predictors246

so that the clusters largely represent the climatological mean DIC and, to a lesser extent,247

the physical water masses, following Landschtzer et al. (2013).248

For the FFN step, we use the ship measurements of DIC from GLODAPv2.2021 between249

January 2004 and December 2019 (Lauvset et al., 2021) as the target data. We only retain250

GLODAP data with a WOCE quality control of 0 or 2 and a secondary quality control flag251

of 1. As predictors, we use the same Argo-based temperature and salinity fields that we252

used during the SOM step. In addition, we use monthly climatologies of mapped dissolved253

oxygen, nitrate, and silicic acid from the World Ocean Atlas 2018 (WOA18; Boyer et al.254

(2018)). These climatologies are based on ship measurements from 1955 through 2017 and255

were interpolated to the global ocean using optimal interpolation. As the nitrate and silicic256

acid from WOA only extend until 500 m, they were not used as predictors in the deeper257

slab, while dissolved oxygen extends to 1500 m in WOA and is thus a predictor variable in258

both depth slabs. Deviating from the approach taken to produce the monthly climatology259

of MOBO-DIC (Keppler et al., 2020b), we use atmospheric pCO2 as an additional predictor260

in the upper depth slab (0 to 500 m) to be able to represent the long-term trend in the261

atmospheric CO2 concentration. Atmospheric pCO2 at each grid cell was computed from the262

GlobalView marine boundary layer product of the mole fraction of CO2 (xCO2; GlobalView-263

CO2 (2011)) and converted to pCO2 following Landschtzer et al. (2013). In the deeper slab264

below 500 m, we use Julian days as a predictor to represent any long-term trend in the265

data. We tested various set-ups where we use latitude and longitude (in the form of sin(lon)266

and cos(lon)), and depth as input variables, and found that the inclusion of this spatial267

information in the predictors did not improve our DIC reconstructions. Thus, the predictors268

between the surface and 500 m are temperature, salinity, dissolved oxygen, nitrate, silicic269

acid, and atmospheric pCO2. Between 500 m and 1500 m, we use temperature, salinity,270

dissolved oxygen, and Julian day as predictors. A more detailed discussion on the choice of271

predictors can be found in Keppler et al. (2020b).272

Note that we use the mapped monthly mean fields as predictors, as opposed to the273

co-measured data from GLODAP during the training step of the FFN. We tested both274

approaches but found the results were very noisy when using the co-measured data as275
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predictors. This noisy output may be partially caused by the WOA monthly gridded fields276

being smoother than the point measurements in GLODAP. Furthermore, using the co-277

measured predictors leads to a substantial loss of training data, as in ∼60,000 data points278

out of ∼440,000 (i.e., ∼14%), the training data do not have usable co-measured predictors.279

The availability of the data limits the domain and resolution of our mapping approach.280

For example, we limit the vertical extent of the multi-year product here to 1500 m (as281

opposed to 2000 m used for the MOBO-DIC climatology) as the DIC observations are282

very sparse below 1500 m and only temperature and salinity are available as physical or283

biogeochemical predictors there. This lack of predictors below 1500 m prevents a robust284

estimate of the DIC variations and trends at these depths. Temporally and spatially, the285

limits tend to be set by the predictor data. The Argo-based data products used here extend286

from 65◦N to 65◦S globally, to 80◦N in the Atlantic Ocean, with shallow coastal regions287

being masked, marking the horizontal extent of our domain. As the mapped Argo-dataset288

starts in 2004, and GLODAPv2.2021 includes cruise data until January 2020, the temporal289

extent of MOBO-DIC is from January 2004 through December 2019.290

All predictors have a monthly resolution on 1◦×1◦ grids, and we interpolate them onto291

28 uneven depth levels between 2.5 m and 1500 m. Note that due to an update to the Argo292

data, the domain of this study is slightly larger than in the monthly climatology of MOBO-293

DIC (Keppler et al., 2020b): it extends further north in the Atlantic (until 80◦N instead of294

65◦N), and some more coastal and shallow regions are included (see Supporting Information295

Fig. S1). As the domain covers most of the global ocean, we refer to our domain as global296

in-text but want to note that it is technically only near-global.297

2.3 Calculation of the trend and inventory changes298

We estimate the trend in DIC over our period based on the slope of a linear regression299

of the deseasonalized DIC at each grid cell. The data were deseasonalized by applying a300

12-month running mean at each grid cell. To calculate the trends in the inventories, we first301

normalize DIC for salinity (hereafter sDIC) to remove any effects from potential changes in302

the salinity, following Friis et al. (2003). For this normalization, we use the same monthly303

Argo-based salinity product as above (Roemmich & Gilson, 2009), using the temporal mean304

salinity from 2004 through 2019 at each grid cell as reference salinity. We convert sDIC from305

gravimetric (unit: µmol kg−1) to volumetric (unit: µmol m−3), and then vertically integrate306

the volumetric trend in the whole domain (upper 1500 m). To estimate the uncertainty in the307

trend, we calculate it with each of the 15 ensemble members and take the standard deviation308

range as the uncertainty range. Note that the uncertainty of the trend only includes the309

ensemble spread (i.e., the prediction uncertainty) and does not consider other sources of310

error, for example, those associated with measurements or representation uncertainty. We311

trust that there should not be a trend in measurement or representation uncertainty in312

the data, yielding a robust estimate of the overall trend uncertainty. We then conduct an313

upscaling to estimate the global changes in sDIC that include regions beyond our domain,314

i.e., the high latitudes, coastal regions, and below 1500 m (see Supporting Information315

Section S3).316

2.4 Comparison with Cant317

We compare the trend in MOBO-DIC with an estimate of the change in anthropogenic318

CO2 (∆Cant). For this comparison, we use two estimates of Cant and scale them to our319

study period. The two estimates are (i) the total change in Cant between 1800 and 2007320

and (ii) the change in Cant between 1994 and 2007. The former is estimated by adding the321

total Cant up to 1994 estimated by Sabine et al. (2004) to the change in Cant between 1994322

and 2007 estimated by Gruber et al. (2019). For the latter, we use the ∆Cant by Gruber et323

al. (2019).324
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To scale Cant to our period, we apply the transient steady-state approach described by325

Mikaloff Fletcher et al. (2006) and Gruber et al. (2019), which relies on the assumption that326

the change in Cant scales with the change in atmospheric CO2:327

∆Ct3−t2
ant = α(t0, t1, t2, t3) ·∆Ct1−t0

ant (1)

where t0 and t1 are the bounds of the periods used to determine ∆Cant (either 1800328

through 2006 or 1994 through 2006) and t2 and t3 bound the period to which the scaling329

should be applied to (here: 2004 through 2019). The scaling factor α is specific for each330

pair of periods, i.e., is a function of t0, t1, t2, and t3, and can be estimated from the relative331

changes in atmospheric CO2, also considering changes in the Revelle factor (Sarmiento et332

al., 1995) and the changes in the air-sea disequilibrium (Gruber et al., 1996; Matsumoto &333

Gruber, 2005):334

α(t0, t1, t2, t3) =
∆tpCO

atm
2 (t3 − t2)

∆tpCOatm
2 (t1 − t0)

· ξ(t2..t3)

ξ(t0..t1)
· γ(t2..t3)

γ(t0..t1)
(2)

where the first factor on the right-hand side is the relative change in atmospheric CO2,335

the second factor is the relative change in the disequilibrium ξ, and the third factor is the336

relative change in the Revelle factor γ.337

In the first case, i.e., for the base period 1800 through 2006, inserting the observed values338

in atmospheric CO2 in the respective years (t0 = 1800, 280 ppm; t1 = 2006, 381 ppm; t2 =339

2004; 377 ppm, t3 = 2019, 410 ppm) gives a value of 0.33 for the first factor on the right-340

hand side of Eq. 2. For the disequilibrium, we take the same estimate Gruber et al. (2019)341

used when scaling from 1800 through 1993 to 1994 through 2006. They estimated a change342

in the disequilibrium of about 6 µatm between 1800 and 1994, and about 3 µatm between343

1994 and 2007, yielding a ratio of 0.94. Similarly, we also take the estimate by Gruber et344

al. (2019) of 0.94 for the third factor, i.e., the ratio of the Revelle factors. Entering these345

three ratios, we obtain an overall scaling factor α of 0.29 (0.33 · 0.94 · 0.94) when comparing346

the period 1800 to 2007 with the period from 2004 through 2019.347

In the second case, the base period for the scaling factor goes from 1994 (t0, 358 ppm)348

through 2006 (t1, 381 ppm), yielding a relative change in atmospheric CO2 of 1.45 compared349

to the period 2004 (t2, 377 ppm) through 2019 (t3, 410 ppm). As the two periods are largely350

overlapping in this case, we assume that the ratio of the disequilibrium and the ratio of the351

Revelle factors are very close to 1 and thus set their values to 1, yielding an overall scaling352

factor α of 1.45 when comparing the period 1994 to 2007 with the period from 2004 through353

2019.354

This scaling is based on many assumptions, especially the assumption of a transient355

steady-state. While the large-scale distribution of Cant has been demonstrated to follow this356

prediction rather closely, Gruber et al. (2019) pointed out that the reconstructed distribution357

of the change in Cant between 1994 and 2007 differs in a few places considerably from that358

reconstructed for the period up to 1994. In particular, they found a meridional shift in the359

accumulation within the Atlantic Ocean, with a reduction in the North Atlantic storage360

being compensated by an increase in the temperate latitudes of the South Atlantic. Using361

two different base periods, we attempt to quantify the potential impact of such changes362

on our conclusions. Direct estimates of the accumulation of Cant over the same period as363

analyzed here would be preferable to our scaling approach but are not published to date.364

3 Uncertainty Assessment365

Our method fills very substantial gaps in space and time (see Supporting Information366

Fig. S4). The GLODAP observations of DIC cover even less of the ocean in horizontal367
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space and time than the surface fCO2 measurements in the SOCAT database that are used368

to construct surface ocean flux products (Landschtzer et al., 2014; Gregor & Gruber, 2021;369

Rdenbeck et al., 2015), i.e., SOCAT only covers approximately 3% of 1◦x1◦ grid cells for any370

given month across the surface ocean in the 2010s (Gruber et al., 2023). Although GLODAP371

contains more data points by containing the vertical dimension, i.e., interior ocean data, we372

still have to fill substantial gaps at each depth level. In each year from 2004 through 2019, we373

have on average 30±9 (mean±1 standard deviation) observations per depth bin. Assuming374

that this observation was representative of a 2◦x2◦ grid at each depth level, would mean that375

only about 0.3% of the global ocean was observed for any given month, requiring that the376

other 99.7% are filled through our statistical gap-filling methodology. Thus, we emphasize377

that users keep the different uncertainties in mind when using our product and interpreting378

our results. Here, we summarize the different sources of uncertainty in our analysis.379

3.1 Calculation of the overall uncertainty380

We identify three main sources of uncertainties that contribute to the total uncertainty381

of our DIC estimate, following Gregor and Gruber (2021): the uncertainties linked to the382

measurements (M), the representation (R), and the prediction (P). The overall uncertainty383

of our DIC estimate (DICerr) can then be estimated with standard error propagation:384

DICerr =
√
M2 +R2 + P 2 (3)

The uncertainty M linked to the measurements stems from sampling errors and385

imprecisions in the measurement system. While GLODAP currently does not report386

measurement uncertainties, they include a measure of spatial consistency based on387

inter-cruise comparisons, which amounts to 2.4 µmol kg−1 for DIC (Lauvset et al., 2021).388

We assume that this uncertainty is the same at all grid points, which is likely an389

overestimation at some points and an underestimation at others.390

The representation uncertainty R results from the fact that the discrete measurements391

in GLODAPv2.2021 that are used as target data to train the network are taken at one point392

in time and space and thus might not represent the true monthly mean of the 1◦×1◦ grid cell393

and the depth bin it falls in. Especially problematic are regions where the spatiotemporal394

variability is high and the number of observations in a grid cell and depth bin is low. It is395

not straightforward to quantify the representation error as this requires full knowledge of the396

spatiotemporal variability of DIC. Gregor and Gruber (2021) estimated the representation397

error of total alkalinity of about 16 µmol kg−1 at the sea surface of the open ocean. As398

the density and spatial distribution of total alkalinity and DIC measurements in GLODAP399

are similar, and regions with high spatiotemporal variability in total alkalinity tend to be400

regions of high variability in DIC as well, we adopt this estimate for all grid cells and depth401

bins. We recognize that alkalinity tends to be less variable than DIC, especially near the402

surface. In addition, the representation error is expected to be larger near the coast than in403

the open ocean due to more variability near the coasts and is also expected to decrease with404

depth (Torres et al., 2021), adding some uncertainty to our uncertainty estimate. Overall,405

we expect that R might be underestimated near the surface and the coast and overestimated406

at depth.407

The prediction uncertainty P represents how well our method can map DIC in time408

and space. We take the standard deviation across the 15-member ensemble of our409

bootstrapping approach as our estimate of the prediction error. The differences in the410

ensemble members are linked to both the ensemble of SOM clusters and the different411

subsets of training and validation data, as described in Section 2.1. We note that our412

approach to quantify the prediction uncertainties only considers the spread induced by413

variations of the method and not the inherent uncertainty of the method itself. Thus, our414

approach may underestimate the potential errors stemming from the very limited415
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time-space distribution of the available data. As this error is difficult to quantify, we rely416

on our evaluations with independent observations, previous mapped estimates, and417

synthetic data (Section 4). The global mean prediction uncertainty is 7 µmol kg−1, but418

with a large spread. We find the highest prediction error in the northern Indian Ocean (up419

to ∼80 µmol kg−1), where the observations are particularly sparse and where our estimate420

is heavily extrapolated (Supporting Information Fig. S3). Such large local uncertainties421

illustrate that our approach can reconstruct global fields, but care must be taken when422

evaluating regional changes, as the uncertainties on a regional level are quite high.423

Combining the three uncertainty contributions (Eq. 3) yields an overall global mean424

uncertainty of 18 µmol kg−1.425

3.2 Quality of fit426

During our mapping approach, we estimate the target data at all grid points. Thus,427

unlike in an interpolation, there is a difference between the target data (i.e.,428

GLODAPv2.2021) and the mapped estimate (i.e., MOBO-DIC). In Supporting429

Information Fig. S4, we present these residuals to get a better handle on the quality of our430

fits. This analysis intends to examine if there are any systematic offsets in different regions431

or depth levels. It also highlights the magnitude of the differences between the training432

data and MOBO-DIC. We find that there is no systematic under- or overestimation433

compared to the training data, and the global mean bias cancels out to be 0, while the434

global mean root mean square difference (RMSD) is 16 µmol kg−1 (see Table 1 and435

Supporting Information Fig. S4), slightly less than our global mean uncertainty of436

18 µmol kg−1.437

4 Evaluation438

We evaluate the quality of the mapped MOBO-DIC product with various independent439

observations and using a synthetic dataset derived from a model for which we know the true440

value. Independence means here that these data were not used for the training of MOBO-441

DIC (see Table 1 in the Main Text for a summary and Supporting Information Sections S5442

and S6 and Figs. S5-S12 for a more in-depth analysis of the evaluation).443

To evaluate our method with the synthetic data, we subsample the simulated DIC in444

the biogeochemical component of the Ocean General Circulation Model HAMOCC (Ilyina445

et al., 2013; Mauritsen et al., 2019) when and where we have observations in446

GLODAPv2.2021. These synthetic data are pseudo-observations from the HAMOCC447

model and not real observations. For the oxygen and nutrient fields that we use as448

predictors, we use the monthly climatologies of these simulated variables, to be consistent449

with our method using real observations. We then run our MOBO-DIC method with these450

synthetic data to reconstruct the simulated DIC fields. We can then compare our451

reconstructed fields with the actual DIC in HAMOCC.452

For the observations, we use three different sources: First, we use a suite of mapped453

DIC climatologies, all of which are based on GLODAP data (Lauvset et al., 2016; Keppler454

et al., 2020b; Broulln et al., 2020). Second, we compare MOBO-DIC with observations from455

time-series stations and biogeochemical Argo floats. Third, we use the mapped surface DIC456

product contained in OceanSODA-ETHZ (Gregor & Gruber, 2021), allowing us to compare457

the monthly 1◦×1◦ fields at the surface when and where the two datasets overlap (January458

2004 to December 2018).459

We first evaluate the climatological mean, then the trend, and the interannual460

variability, for each of these evaluation data where the temporal resolution allows. Note461

that we use DIC and not sDIC in the evaluation with observations, as salinity is not462

always co-measured, and using monthly 1-degree gridded salinity fields could introduce463

–10–

 19449224, ja, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

B
007677 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [14/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Global Biogeochemical Cycles

errors. In contrast, our comparison of synthetic MOBO-DIC and the HAMOCC model464

uses sDIC, as here we have both salinity and DIC as monthly 1-degree gridded fields.465

4.1 Evaluation of climatological mean466

The evaluation of the MOBO-DIC method with the synthetic data from HAMOCC467

illustrates that the method is well-equipped to reconstruct the mean DIC fields in HAMOCC468

well (see Table 1). MOBO-DIC reconstructs the simulated climatological mean DIC fields469

with a negligible bias of -1 µmol kg−1 and with an RMSD of 12 µmol kg−1.470

The evaluation with the observational climatological constraints also reveals good471

performance of MOBO-DIC. The mean differences relative to the Lauvset and Broullón472

climatologies are between 7 and 10 µmol kg−1, and each has an RMSD of 17 µmol kg−1.473

This is within the combined uncertainties of MOBO-DIC and the comparison data sets474

(see Table 1 and Supporting Information Fig. S5 and S6). It also needs to be noted that475

the Lauvset climatology is normalized to the year 2002, while the Broullón monthly476

climatology is normalized to 1995. Assuming an average surface DIC increase of477

∼2 µmol kg−1yr−1, based on the anthropogenic perturbation, we estimate that the478

average surface concentration of MOBO-DIC (average year: 2012) is ∼20 µmol kg−1
479

higher than the surface Lauvset climatology (normalized to 2002) and ∼34 µmol kg−1
480

higher than the surface Broullón monthly climatology (normalized to 1995). The total481

differences for the Lauvset and Broullón climatologies are less than this as the reported482

biases in Table 1 are averages over the entire water column, but we observe surface483

differences on these orders in Supporting Information Fig. S5 and S6.484

Surprisingly, the bias and RMSD between the monthly climatology of MOBO-DIC485

(Keppler et al., 2020a) and this version of MOBO-DIC is larger (11 µmol kg−1 and486

20 µmol kg−1, respectively) than the RMSD between the other two climatologies that are487

based on different methods, albeit well within the combined uncertainties. The488

MOBO-DIC climatology is centered around the years 2010/2011, while this study is489

centered around the year 2012. Thus, the expected surface difference should maximally be490

of the order of ∼4 µmol kg−1. Therefore, we cannot attribute the difference to a change in491

the periods. Instead, we found that the monthly climatology of MOBO-DIC from Keppler492

et al. (2020a) contains less DIC in the subsurface equatorial Atlantic and Indian Ocean493

than the Lauvset climatology (see Fig. S4 in Keppler et al. (2020a)), while our new494

version of MOBO-DIC is more consistent with the Lauvset and Broullón climatologies (see495

Supporting Information Fig. S5). As there are very little data in the equatorial Atlantic496

and Indian Ocean, it is difficult to determine which of the estimates lies closer to the true497

value. We speculate that the true value likely lies closer to the three estimates that are498

close to each other (Lauvset, Broullón, and this study), than the one that differs (monthly499

climatology of MOBO-DIC).500

The biases between MOBO-DIC and the comparison data sets from time-series stations501

and floats ranges from -5 to 16 µmol kg−1. As the biases are both positive and negative,502

there is no indication of MOBO-DIC having a systematic bias towards over/underestimating503

the global carbon content (see Table 1 and Supporting Information Fig. S9 and S10). The504

RMSD between MOBO-DIC and these data range from 14 µmol kg−1 for the SOCCOM505

floats to 42 µmol kg−1 for Drake Passage but are mostly between 15 and 20 µmol kg−1,506

i.e., comparable to the mean global uncertainty of MOBO-DIC (18 µmol kg−1). In all cases507

except for Drake Passage, the RMSD is within the combined uncertainties of MOBO-DIC at508

the location of the compared data set and the uncertainty of the compared data set, using509

standard error propagation. The disagreement at Drake Passage, a well-observed time-series510

station, is associated with large local variabilities that are not captured in MOBO-DIC and511

are further discussed in Section 4.3.512

Comparing MOBO-DIC at the surface with the surface DIC from OceanSODA-ETHZ,513

we find that the magnitude and spatial patterns of the mean DIC agree very well, considering514
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Table 1. Summary of the bias, defined here as the mean difference (MOBO-DIC − comparison

data sets), and the RMSD between MOBO-DIC and the comparison data sets. Also displayed are

the mean uncertainty of MOBO-DIC at the time and location of the compared data set and the

uncertainty of the comparison data sets.

Compared data set Type of data Bias (µmol kg−1) RMSD (µmol kg−1) MOBO-DIC uncertainty (µmol kg−1) Comparison uncertainty (µmol kg−1)

GLODAPv2.2021 Ship data, without interpolation or mapping (used to train the neural network) 0 16 18 2
Lauvset climatology Global climatology (optimal interpolation) 7 17 18 7
Broullón climatology Global monthly climatology (single-step neural network) 10 17 18 N/A

MOBO-DICclim Global monthly climatology (cluster-regression) 11 20 18 9
HAMOCC Synthetic data -1 12 18 N/A

BATS Time-series station 12 17 17 2
HOTS Time-series station -4 15 17 2

Drake Passage Time-series station (surface) 16 42 18 1
SOCCOM floats Calculated DIC from BGC floats (pH) with LIAR algorithm -5 14 17 6

OceanSODA-ETHZ Global surface estimate (cluster-regression) 4 15 18 21

they are based on independent data (SOCAT pCO2 vs. GLODAP DIC; Bakker et al. (2016);515

Lauvset et al. (2021)). The global mean RMSD between the two data sets is 15 µmol kg−1,516

and there is a mean bias of approximately 4 µmol kg−1, which is well within the uncertainties517

(see Table 1 and Supporting Information Fig. S11 a-c).518

4.2 Evaluation of trends519

Our synthetic MOBO-DIC generally reconstructs both the spatial distribution and520

magnitude of the trend of sDIC in HAMOCC well, with no indication of a systemic over-521

or underestimation of the trend (see Supporting Information Fig. S7). An exception is the522

deep eastern equatorial Pacific, where MOBO-DIC overestimates the trend. This could be523

the result of overfitting or of challenges of MOBO-DIC to fit the trends in a region with524

very large lateral gradients and where data coverage is intermittent. We do not see similarly525

large trends in the reconstructions with observations, possibly because the observed lateral526

gradients are smaller than those in the model. Still, this mismatch in the synthetic data527

suggests that the MOBO-DIC reconstructed trends are likely somewhat less robust than the528

climatologies and that care must be taken to avoid an overinterpretation of the results.529

The sDIC trends at the time-series stations are comparable to MOBO-DIC at the530

times and locations of these independent observations (see Table 2 and Supporting531

Information Fig. S9). For example, we observe a mean trend in the water column at532

BATS of 7 µmol kg−1 decade−1, while the mean trend in the water column in MOBO-DIC533

at the grid cell closest to BATS is 5 ±2 µmol kg−1 decade−1. However, some quantitative534

differences exist, with the largest difference in the trend found at depths between 600 and535

800 m at BATS. There, MOBO-DIC, with an estimated trend of only536

5±2 µmol kg−1 decade−1 underestimates the observed trend of 16 µmol kg−1 decade−1
537

quite substantially. With BATS being one of the best-constrained time-series sites, the538

observed trend is very robust. The trend is much better reconstructed in the shallower539

waters at BATS, indicating that this is not a general issue but likely an issue specifically540

associated with the intermediate water masses in the North Atlantic.541

MOBO-DIC also underestimates the trend seen in the BGC-Argo floats in the Southern542

Ocean (SOCCOM floats) between 20 and 40 m (see Table 2 and Supporting Information Fig.543

S10). The observed trend is -20 µmol kg−1 decade−1, while the trend estimate in MOBO-544

DIC at the same grid cells is only -9±2 µmol kg−1 decade−1. There is a known difference545
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between ship-based DIC measurements and DIC derived from float pH measurements (Gray546

et al., 2018). However, this offset is thought to be relatively steady and should not affect547

the trend. Nevertheless, the time series is short and spatially sparse, so it is not entirely548

clear whether the issue is with MOBO-DIC or with the SOCCOM-derived DIC trend.549

The trend of MOBO-DIC at the surface has a similar spatial distribution but is550

slightly smaller than the trend of the mapped surface DIC from Gregor and Gruber551

(2021), with a global mean trend between January 2004 and December 2018 of552

0.6±0.1 µmol kg−1 yr−1 and 0.8 µmol kg−1 yr−1, respectively (see Supporting Information553

Fig. S11 d-f). As OceanSODA-ETHZ is based on considerably more surface measurements554

than MOBO-DIC, it is likely that MOBO-DIC slightly underestimates the trend of the555

surface DIC.556

4.3 Evaluation of Interannual variability557

Similar to the trend, our synthetic MOBO-DIC reconstructs the spatial distribution558

and magnitude of the interannual variability, defined here as the standard deviation across559

the ensemble, of sDIC in HAMOCC well (see Supporting Information Fig. S8). However,560

we also find an artifact in the deep eastern equatorial Pacific, i.e., the same region where561

we had difficulties with the trend. There, the interannual variability is too large in the562

synthetic MOBO-DIC reconstruction. Again, no such artifact exists in the MOBO-DIC563

reconstructions with observations, but smaller artifacts cannot be ruled out.564

MOBO-DIC tends to underestimate the observed interannual variability of sDIC at the565

time-series stations and the locations of the SOCCOM floats (see Table 2 and Supporting566

Information Figs. S9 and S10). The biggest difference in the interannual variability is567

between 20 and 40 m at HOT, where MOBO-DIC estimates a variability of only 4 µmol kg−1,568

while the observations suggest a value of 11 µmol kg−1, As above, such differences can be569

at least partially explained by the observations containing a lot of noise and not necessarily570

being representative of the mean monthly 1◦ fields. At Drake Passage, the comparison data571

displays considerably more variability than our gridded product and may include outliers.572

Thus, there are instances where the discrepancies between MOBO-DIC and the comparison573

data sets are beyond the uncertainty limits. We expect that this is mostly due to large local574

variabilities that are smoothed out in the monthly mean 1◦×1◦ fields in MOBO-DIC.575

The interannual variability of MOBO-DIC at the surface also has a similar distribution576

and is slightly smaller than the interannual variability of the mapped surface DIC from577

Gregor and Gruber (2021) (see Table 2 and Supporting Information Fig. S11 g-i). Here, we578

observe global mean standard deviations of 3 and 4 µmol kg−1, respectively (see Supporting579

Information Fig. S11 g-i). An explanation for their slightly higher variability could lie580

in the fact that OeanSODA-ETHZ uses satellite-based sea surface temperature (SST) as a581

predictor while we use float data for temperature and salinity. Satellite-based SST estimates582

are known to display more variability than float-based estimates (Roemmich & Gilson, 2009).583

Further, OceanSODA-ETHZ has less interannual variability in pCO2 than other surface584

products such as SOM-FFN by Landschtzer et al. (2016). Thus, the available evidence585

suggests that MOBO-DIC tends to underestimate the interannual variability. We suspect586

that if time-varying monthly fields of oxygen and nutrients were available as predictors, the587

interannual variability in MOBO-DIC might be larger. In addition, if we had more DIC588

training data available, the interannual signal could likely be captured better.589

5 Results and Discussion590

5.1 Global changes in the DIC inventory591

The reconstructed (near) global sDIC inventory between 0 and 1500 m increased steadily592

from 2004 through 2019, with a total increase of 42±5 Pg C over this period (Fig. 1). All593
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Table 2. Comparison of the trends (in µmol kg−1 decade−1) and interannual variability (IAV,

in µmol kg−1), defined as the standard deviation in time (seasonal cycle and trend removed), from

independent DIC estimates, and from MOBO-DIC at the time and locations of the independent

data. Due to data sparsity in the observational data, we average the fields over depth slabs (20

to 40 m, 100 to 150 m, 600 to 800 m). The locations of the stations are illustrated in Supporting

Information Fig. S1.

Compared data set → BATS MOBO-DIC at BATS HOT MOBO-DIC at HOT Drake Passage (surface) MOBO-DIC at Drake Passage SOCCOM floats MOBO-DIC at SOCCOM floats
Depth ↓

Trend 20-40 m 1 7 5 2 8 1 -20 -9
100-150 m 3 8 13 6 N/A N/A 3 1
600-800 m 16 5 4 5 N/A N/A 19 26

IAV 20-40 m 5 2 11 4 9 5 4 3
100-150 m 4 2 6 2 N/A N/A 2 2
600-800 m 4 1 3 1 N/A N/A 3 3

depth ranges contribute to this trend, with ∼16% of the increase in sDIC having occurred594

in the upper 150 m, ∼18% between 150 and 300 m, ∼38% between 300 and 700 m, and595

∼28% between 700 and 1500 m. Superimposed onto this strong positive trend, we observe596

the effect of the seasonal cycle on the total inventory (order of ∼2 Pg C), some interannual597

variations, and a weakening of the trend in the second half of the record, most strongly598

visible in the deepest depth slice analyzed, i.e., below 700 m.599

By adding an estimate of the sDIC changes in the shallow coastal regions and the600

high latitudes (3±0.4 Pg C) and in the ocean below 1500 m (6±6 Pg C; see Supporting601

Information Section S3), we arrive at a global sDIC inventory change of 51±11 Pg C over602

the 16 years of our analysis. This corresponds to an average rate of increase of603

3.2±0.7 Pg C yr−1. We interpret this increase in sDIC to be mostly of atmospheric origin,604

i.e., reflecting a net uptake of CO2 from the atmosphere, although we cannot exclude a605

small contribution coming from other sources, such as a trend in the input from rivers and606

sediment sources, or an imbalance with the marine organic carbon pool.607

Our interior ocean data-based net ocean uptake estimate of 3.2±0.7 Pg C yr−1 is608

comparable with surface pCO2 observation-based estimates of the net carbon flux from609

the atmosphere into the ocean. The latest update of the net air-sea CO2 flux estimate by610

Landschtzer et al. (2016), which includes both the open and coastal ocean, suggests a global611

uptake of 2.1±0.5 Pg C yr−1 from 2004 through 2019. Adding a riverine outgassing of CO2612

of 0.6±0.4 Pg C yr−1 (Friedlingstein et al., 2022; Regnier et al., 2022), these surface ocean613

data suggest a net uptake of 2.7±0.6 Pg C yr−1. Similar numbers are obtained when using614

an ensemble of surface pCO2 data (Fay et al., 2021). This is 0.5±0.6 Pg C yr−1 less than our615

estimate based on the increase in ocean interior sDIC but within the uncertainty bounds.616

Also, a scaled estimate of the accumulation of anthropogenic CO2 in the ocean interior over617

this time period suggests a global uptake on the order of close to 3 Pg C yr−1 (Gruber618

et al., 2023). It has to be noted, as stated above, that there are still uncertainties in the619

surface-based estimates, due to the indirect approach that needs to incorporate the riverine620

flux, which has large uncertainties, and a possible skin-temperature correction (Dong et621

al., 2022; Watson et al., 2020). Specifically, Dong et al. (2022) suggested that the proper622

accounting of all temperature-related issues (e.g., skin correction) would increase the ocean623

uptake of the commonly used surface pCO2 based products by +35% (0.6 Pg C yr−1) for624

the period 1982 to 2020. If one was to use the skin correction of 0.6 Pg C yr−1, as well as625
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Figure 1. Temporal change in the global sDIC inventory derived from MOBO-DIC from 2004

through 2019, relative to January 2004, for different depth slabs: 0 to 150 m, 150 to 300 m, 300 m

to 700 m, 700 m to 1500 m (from light blue to dark blue). The gray shading marks the uncertainty

around the upper 1500 m. The dashed black line illustrates the estimated increase in Cant based

on ∆Cant from 1800 to 2007 scaled to the same period, using a scaling factor α of 0.29.

the 0.6 Pg C yr−1 riverine flux, this would yield a total flux of 3.3±0.6 Pg C yr−1, which is626

remarkably close to our estimate of 3.2±0.7 Pg C yr−1.627

Our estimate of the total increase in ocean sDIC of 51±11 Pg C implies that from628

2004 through 2019, the ocean sink accounted for ∼31±7% of the total anthropogenic CO2629

emissions (here: from fossil fuel emissions and land-use change, Friedlingstein et al. (2022)).630

This uptake fraction is larger but within the uncertainties compared to the fraction reported631

by the Global Carbon Project based on ocean models and surface ocean pCO2 products632

during the decade 2011 to 2020 (26±4%, Friedlingstein et al. (2022)). As pointed out by633

Friedlingstein et al. (2022), within the Global Carbon Budget estimates, it is particularly634

the hindcast model-based estimates that indicate a smaller uptake. Similarly, Terhaar et635

al. (2022) used an emergent constraint approach to demonstrate that most CMIP models636

tend to take up too little CO2 from the atmosphere. Although CMIP models differ from637

the hind-cast models used in the Global Carbon Budget, these findings further indicate638

that the models underestimate the oceanic carbon uptake, as also discussed by Hauck et639

al. (2020). Our interior ocean-based estimate thus supports the larger (mostly observation-640

based) estimates of the ocean carbon sink in the Global Carbon Budget, albeit within large641

uncertainties.642

Another reference point is the oceanic accumulation of Cant between 2004 and 2020.643

Lacking an estimate of the Cant accumulation over the same period, we scale the estimates644
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of Sabine et al. (2004) and Gruber et al. (2019) to this period, assuming a transient645

steady-state (see Section 2.4). We obtain a global increase of 44±6 Pg C646

(2.8±0.4 Pg C yr−1) in Cant (1800-2007 scaled to 2004-2019 with a scaling factor of 0.29)647

and 49±6 Pg C (3.1±0.4 Pg C yr−1) in Cant (1994-2007, scaled to 2004-2019 with a648

scaling factor of 1.45). The estimates are remarkably close to our estimate of the increase649

in total sDIC (51±11 Pg C, i.e., 3.2±0.7 Pg C yr−1). This suggests that we can largely650

attribute the reconstructed increase in the sDIC to the uptake of anthropogenic CO2 from651

the atmosphere. Similarly, when only considering the domain of MOBO-DIC and without652

upscaling, we also find that the trend in MOBO-DIC (40±5 Pg C, i.e., 2.5±0.3 Pg C yr−1)653

is close to the increase in Cant over the same period and domain (35±4 Pg C, i.e.,654

2.2±0.2 Pg C yr−1, dashed line in Fig. 1), and also well within the uncertainties.655

Considering the proposed outgassing signal of Cnat (McNeil & Matear, 2013), this would656

have been reflected in a weaker trend in total sDIC than in Cant; however, we do not657

observe this during our study period. This finding is in-line with the recent review by658

Gruber et al. (2023) who also concluded that the trend in the oceanic carbon sink was659

primarily driven by the increasing uptake of Cant and that the proposed loss of Cnat can660

at this stage not be conclusively quantified with observations.661

Superimposed onto this positive long-term trend of sDIC, the reconstructions reveal662

substantial interannual variations and a weakening of the trend after ∼2012, especially in the663

deeper waters. The following sections will further discuss these variations and the weakening664

trend. We also dive deeper into the differences between the anthropogenic component and665

the total sDIC in the water column, revealing changes in the natural DIC pool. Additionally,666

we find a strong seasonal signal, most pronounced near the surface. We do not discuss the667

seasonal variations near the surface, as the seasonal cycle of DIC was explored in Keppler668

et al. (2020b).669

5.2 Regional distribution of trends in sDIC, Cant, and Cnat670

The rate of the depth-integrated accumulation of sDIC is regionally strongly671

structured (Fig. 2a), with the highest rates of accumulation found in the North Atlantic672

south of Iceland, i.e., the Subpolar Gyre. There, the linear trend exceeds 1.5 mol673

m−2 yr−1. An additional region with elevated rates of increase can be identified in the674

southern hemisphere between about 20◦S and 45◦S with typical accumulation rates of675

∼1 mol m−2 yr−1. The higher latitudes of the Southern Ocean, the tropical regions, the676

northern Indian, and particularly the North Pacific have considerably weaker677

depth-integrated changes in sDIC, typically 0.5 mol m−2 yr−1 or less. In some regions of678

the North Pacific, the depth-integrated sDIC even decreases over our study period. This679

vertical integral is a robust feature of our analysis as it is only weakly changing when680

removing trends within the water column that are not significant (compare Supporting681

Information Fig. S12 with Fig. 2a).682

At each depth level, most of the trends in sDIC are statistically significant (95%683

confidence interval, see Supporting Information Section S7 and Fig. S12). This is also the684

case for the negative trends in the North Pacific. Further support comes from the685

existence of a comparable negative trend in the surface DIC reconstructions of the686

OceanSODA-ETHZ product (Gregor & Gruber, 2021), as demonstrated in Section 4.2 and687

Supporting Information Fig. S11. Thus, this negative signal in the North Pacific appears688

robust within our period and is not an artifact of our method.689

Next, we examine the similarity between the rate of depth-integrated accumulation of690

sDIC and Cant, which becomes even more evident when they are put side by side, irrespective691

of how we estimated the expected change in Cant from 2004 through 2019. The patterns692

and magnitude of the depth-integrated accumulation of sDIC (Fig. 2a) and the two different693

estimates of Cant (Fig. 2b,c) are to the first order approximately the same, as also evidenced694

by their high pattern correlation coefficient c = 0.56 and 0.63, between the trend in MOBO-695
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Figure 2. Maps of the column-integrated (upper 1500 m) (a) change in sDIC from 2004 through

2019 based on the linear trend, (b,c) change in Cant scaled to the same period (2004 through 2019),

and (d,e) the anomalous change (i.e., approximately the change in Cnat) from 2004 through 2019,

estimated from the difference between the change in the MOBO-DIC inventory [illustrated in (a)],

and the change in the Cant inventory, scaled to the same period as (a) [illustratedin (b and c)]. For

the combined estimate of Cant by Sabine et al. (2004) (1800 to 1994) and Gruber et al. (2009) (1994

to 2007) (b,d) and for the estimate of Cant by Gruber et al. (2009) (1994 to 2007; c,e). Scaling

on the basis of the transient steady-state model (anom = ∆MOBO-DIC − α · ∆Cant, α = 0.29

for the period 1800-2007 and α = 1.45 for the period 1994-2007). See Supporting Information Fig.

S12 for the trends in MOBO-DIC on individual depth levels.

DIC and the scaled ∆Cant from the combined estimate by Sabine et al. (2004) and Gruber et696

al. (2019), and the estimate by Gruber et al. (2019), respectively. For example, we observe in697

all fields a large increase in the North Atlantic and a broad band of enhanced accumulation698

in the mid-latitudes of the Southern hemisphere. Also present in all fields is the weaker699

signal in the mid-latitude Southern Ocean. This further supports the conclusion that most700

of the column-integrated change in sDIC can be attributed to the increase in Cant during701

this period.702
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However, there are also several notable differences, discernible when we subtract the703

estimated anthropogenic component (i.e., ∆Cant) from the reconstructed change in sDIC704

(Fig. 2d,e). This difference can be interpreted as the change in the natural oceanic CO2705

component of DIC, i.e., ∆Cnat, although given our steady-state assumption when estimating706

∆Cant, this difference can also contain an element of the non-steady-state, i.e., climate707

variability induced, component of ∆Cant. The North Pacific stands out as the region with708

the biggest loss in Cnat. In addition, Cnat is lost in the upwelling region of the Atlantic709

sector of the Southern Ocean and the Subtropical Gyre of the North Atlantic. These losses710

of Cnat are counter-balanced by gains of Cnat in the tropics and the Indo-Pacific sector711

of the Southern Ocean. Furthermore, in the North Atlantic Subpolar Gyre, a region of712

strong uptake of Cant, we also observe an increase in Cnat. Integrating ∆Cnat yields a total713

increase of 0.4±0.8 Pg C yr−1, and 0.1±0.8 Pg C yr−1, for Cnat based on the combined714

estimate (Sabine et al., 2004; Gruber et al., 2019), and the estimate by Gruber et al. (2019),715

respectively. Given the lack of statistical significance, we conclude that we cannot detect a716

global change in Cnat during our study period.717

Nonetheless, the reduction of ∆Cnat in the North Pacific stands out. We link this718

change to the phasing of the Pacific Decadal Oscillation (PDO) as it shifted between 2004719

and 2019 from positive to negative. While negative PDO regimes are associated with a720

shallow thermocline in the Kuroshio Extension, which results in deep mixing and cooler721

SSTs in the North Pacific, positive PDO regimes are associated with warmer SSTs (Mantua722

& Hare, 2002). Thus, we speculate that during our analysis period, the shoaling of the723

thermocline in the North Pacific brought DIC stored at depth to the surface, allowing it to724

outgas, leading to an overall loss of DIC in this region. We expect that the opposite would725

occur during positive phases of the PDO so that the net change over multiple decades726

would be close to zero, and thus not impact the long-term trend. To test this hypothesis,727

we plotted the trend in the surface sDIC from OceanSODA-ETHZ (Gregor & Gruber, 2021)728

over their entire study period (1985 through 2018). Over that extended period, we do not729

observe negative trends in surface sDIC in the North Pacific (not shown), indicating that730

the observed negative trend in the North Pacific sDIC and Cnat between 2004 and 2019 is731

not a long-term signal. The loss of Cnat in the North Pacific during our analysis period732

is partially balanced by a gain in Cnat in most parts of the Indo-Pacific, especially in the733

Western tropical Pacific. We find that this signal is associated with the phasing of the734

El Niño Southern Oscillation (ENSO), as further discussed in Supporting Information Fig.735

S13. We speculate that over a longer period than our 16 years, this signal of increased Cnat736

in the Western tropical Pacific would also be dampened.737

Similarly, we link the changes in Cnat in the North Atlantic to the phasing of the738

Atlantic Multidecadal Oscillation (AMO; Kerr (2000) as between 2004 and 2019, the AMO739

index moved from positive to negative (see https://climatedataguide.ucar.edu/740

climate-data/atlantic-multi-decadal-oscillation-amo). Negative AMO phases are741

associated with increased vertical mixing in the North Atlantic Subpolar Gyre, and thus,742

an increase of upper ocean DIC and Cnat in this region (Breeden & McKinley, 2016).743

Concurrently, in the North Atlantic Subtropical Gyre, negative AMO phases are744

associated with a decrease in DIC and Cnat in this region due to changes in the745

temperature affecting the solubility of CO2. In the tropical Atlantic, the increase in Cnat746

during our study period might be associated with teleconnections from the AMO phasing.747

The loss of Cnat in the South Atlantic is in line with the findings by Keppler and748

Landschtzer (2019) who reported a weakening of the Southern Ocean carbon sink in the749

Atlantic sector since ∼2012. They linked this weakening to shifts in sea level pressure and750

associated changes in surface winds. We note that these links between changes in Cnat and751

the PDO and the AMO are speculative at this point, as the relatively short temporal752

extent of MOBO-DIC (16 years) prevents us from robustly concluding on the effect of753

multi-decadal modes of variability.754
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Fig. 3 reveals how the trend in sDIC varies with depth at the scale of entire ocean755

basins split into latitude bands (black line). Near the surface, sDIC is reconstructed to756

have increased, on average by about 0.6 µmol kg−1 yr−1, with some regions having a higher757

accumulation (e.g., 0.8 µmol kg−1 yr−1 in the North Atlantic) and other regions less (e.g.,758

0.3 µmol kg−1 yr−1 in the North Pacific). In all regions, the trend in sDIC increases759

between the mixed layer and the intermediate waters and then decreases with depth below760

that, reaching values of around 0.2 µmol kg−1 yr−1 at 1500 m. We observe the largest761

increase in sDIC in the Atlantic between ∼200 m and 500 m (∼0.9 µmol kg−1 yr−1).762

Comparing the temporal trends in sDIC with the estimated changes in Cant (blue763

and red lines in Fig. 3) highlights strong similarities but also distinct differences. Near the764

surface, sDIC increased less than Cant during our study period. This difference is significant765

in all regions except for the Southern Ocean and North Atlantic. In the deeper ocean, the766

difference between the trend in sDIC and ∆Cant is not significant in the Southern Ocean,767

North Pacific, tropical Indian Ocean, and the South Atlantic, while in the other regions, the768

trend in sDIC tends to be larger than the two estimates of ∆Cant. The differences between769

the trends in sDIC compared to those in Cant imply a loss of Cnat in the upper ocean and a770

gain of Cnat in the ocean’s interior below a few hundred meters depth. Combined with the771

lack of an overall change in Cant, this suggests a strong internal redistribution of oceanic772

Cnat over our analysis period.773

We tested the robustness of our inferred ocean internal redistribution of Cnat by774

comparing them to data from repeat hydrographic lines obtained as part of the Global775

Ocean Ship-based Hydrographic Program (GO-SHIP; Talley et al. (2016)). In Supporting776

Information Figure S14, we compare the change in DIC between different occupations of777

the same line with the reconstructed change in MOBO-DIC at the same locations over the778

same period, and also with the changes in Cant scaled to the same period. We find that779

the change in DIC (both at the repeated GO-SHIP tracks and in MOBO-DIC) differs780

substantially from the ∆Cant profiles, in a similar way as demonstrated when we average781

over large regions in Fig. 3. This adds a second line of evidence that the vertical782

redistributions of Cnat that we discuss here are not artifacts from our method but are also783

directly visible in the ship measurements from the GO-SHIP program. We note that the784

magnitude of the trend in DIC is larger when only considering the grid cells of the785

GO-SHIP tracks (Supporting Information Fig. S14), than when averaging over large786

regions (Fig. 3), due to a tendency for opposing trends canceling each other when the787

profiles are averaged over large regions.788

The similarities and differences in the vertical distribution of the trends in sDIC, Cant,789

and Cnat become even more evident when analyzing zonal mean sections of these components790

(Fig. 4). Due to methodological constraints, there are some discontinuities at 500 m in the791

MOBO-DIC derived sDIC (Fig. 4a-c), which are associated with boundaries generated by792

the depth slabs. Aside from that, the trend in sDIC and ∆Cant (Fig. 4d-f) are very similar,793

as noted above for the mean profiles. This figure again highlights the loss of Cnat (Fig.794

4g-i) at the surface, except in the North Atlantic. We also observe a loss of Cnat in the795

North Pacific, extending down to 1500 m but most pronounced in the upper ∼800 m. The796

northern high latitudes tend to lose Cnat at depth, while the low latitudes tend to gain Cnat797

at depth. Overall, the redistribution of Cnat occurs both horizontally, as demonstrated in798

Fig. 2, and vertically (Fig. 3 and 4), but as pointed out above, the signal in Cnat is within799

the uncertainty bounds.800

We cannot identify the potential reasons for this redistribution, but the upper ocean801

loss of Cnat may be at least partially driven by the warming of the ocean, which is strongest802

in the upper ocean (IPCC, 2021). In addition, such a redistribution pattern is reminiscent803

of the impact of the ocean’s biological pump, where an increased efficiency of this pump804

would lead to a depletion of Cnat in the upper ocean and an accumulation at depth. As805

we observe this pattern most prominently in the tropics, we speculate that biology may be806

driving the change in sDIC here. Conversely, as we already hypothesized above, the other807
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Figure 3. Vertical profiles of the mean trend in subregions for sDIC estimated by MOBO-DIC

(black) and ∆Cant from 1800 to 2007 scaled to the period 2004 through 2019 (blue), and from 1994

to 2007, scaled to 2004 through 2019 (red). The uncertainty of the trend in sDIC, based on the

standard deviation across the trend in the 15 ensemble members, is illustrated in shading. The

uncertainty of the trend in ∆Cant, based on the standard deviation in the latitude-longitude space,

is illustrated in shading. Separately for the Southern Ocean (a), Indian Ocean (d,g), Pacific (b,e,h),

Atlantic (c,f,i), in the northern temperate regions (until 23◦N, b,c), the tropics (23◦N to 23◦S, d-f),

and in the southern temperate regions (from 23◦S to 40◦S, g-i). The map at the bottom indicates

the limits of the ocean basins in color, and the climatic regions are delimited by black lines.

regions, including the North Pacific, North Atlantic, and Southern Ocean are likely driven808

by physical changes.809

It should also be noted that the vertical profile in the trend is strongly influenced by810

interannual variations, such as variations in the thermocline and surface outgassing. Thus,811

the signal in the mixed layer is prone to large interannual to decadal variations, which are812
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Figure 4. Zonal mean sections of the trend in sDIC from 2004 through 2019 (a-c), of ∆Cant

from 1800 to 2007, scaled to our period (d-f), and the difference between the two, i.e., ∆Cnat (g-i),

for the Indian Ocean (a,d,g), Pacific (b,e,h), and the Atlantic (c,f,i). The map at the bottom right

illustrates the boundaries of the basins.

especially dominant in the Southern Ocean (Le Qur et al., 2007; Landschtzer et al., 2015;813

Keppler & Landschtzer, 2019). Therefore, the observed trends in the mixed layer depend814

greatly on the start and end year and should be interpreted with care. A longer time series815

would yield a result more representative of the anthropogenically forced trend.816

5.3 Interannual variability at global and basin-scale817

The interannual variability of sDIC, defined here as the standard deviation in time818

(seasonal cycle and trend removed), is rather small in our product, especially when compared819

to the magnitude of the trend (previous section) and the amplitude of the seasonal cycle820

(Keppler et al., 2020b). With a global mean temporal standard deviation of 2 µmol kg−1
821

at 150 m (the depth level with the largest mean standard deviation), compared to a global822

mean uncertainty of 18 µmol kg−1 at 150 m, the interannual variability is well within the823

product uncertainty of MOBO-DIC in most parts of the ocean. However, as highlighted in824

Section 4.3, MOBO-DIC likely underestimates the interannual variability.825

Nevertheless, some clear regional signals of the interannual variability emerge (Fig. 5):826

the largest interannual signal is generally in the thermocline region (∼150 m), while in the827
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mixed layer and below 700 m, the interannual variability is minimal. The equatorial Pacific828

stands out as a region with the largest variance, while we observe very little interannual829

variability in the Southern Ocean, a region with large decadal variability in the air-sea CO2830

flux estimates (Le Qur et al., 2007; Landschtzer et al., 2015; Keppler & Landschtzer, 2019).831

A recent study has suggested that the decadal variations of the air-sea CO2 fluxes in the832

Southern Ocean may be overestimated in the mapped surface estimates (Gloege et al., 2021);833

however, the strongest variations occur around the year 2000 (see, e.g., Friedlingstein et al.834

(2022)), i.e., before the start of our time-series here.835

Figure 5. Zonal mean sections of the interannual variability of sDIC, defined as the standard

deviation of the time-dimension of sDIC (detrended, seasonal cycle smoothed with a 12-month

running mean) for the Indian (a), Pacific (b), and Atlantic Oceans (c). See the map at the bottom

right of Fig. 4 for the boundaries of the basins.

We further illustrate the nature of the mean vacillations of the vertically integrated sDIC836

(upper 1500 m) for large subregions in Fig. 6. The most dominant interannual variations837

are found in the Pacific, where we see a steep increase in sDIC between 2010 and 2014 in the838

tropics. The northern temperate Pacific also stands out: Here, the trend in sDIC is initially839

weak until 2010, increases until 2014, and then we observe a negative trend until the end of840

the time series in December 2019. Both in the northern and southern temperate regions of841

the Atlantic, the sDIC trend has weakened since around 2012. In contrast, averaged over the842

whole Southern Ocean, we find very few interannual variations here. Similarly, the Indian843

Ocean, the South Pacific, and the tropical Atlantic all vary little interannually in the upper844

1500 m when averaging over these areas.845

We link the sDIC increase in the tropical Pacific at least partially to a shift from La846

Niñas (especially in 2008 and 2011) to El Niños (especially in 2015 and 2019, see847

Supporting Information Fig. S13). The other ENSO-related signals during our study848

period are considerably weaker and seem mostly dampened when considering the whole849

tropical Pacific. The large variation in the North Pacific is likely to be influenced by the850

phasing of the PDO, but may also have an ENSO-related teleconnection. We find that the851

weakening of the vertically integrated sDIC around 2012, illustrated in Fig. 1, stems852

largely from the high latitude South Atlantic and the tropical Pacific. The weakening of853

the sink in the high latitude South Atlantic is in line with the findings by Keppler and854

Landschtzer (2019), who report a weakening of the CO2 uptake in the Atlantic sector of855

the Southern Ocean around 2012. While this signal is not dominant when averaging over856

the whole Southern Ocean, this weakening sink around 2012 is also visible in the global857

changes in sDIC (Fig. 1), highlighting the important role of the Southern Ocean carbon858

uptake (here: specifically its Atlantic sector) globally. A longer time series is needed to859
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Figure 6. Timeline of the vertical integral (upper 1500 m) of sDIC relative to January 2004

(think solid lines) in the northern temperate regions (a), tropics (b), southern temperate regions (c),

and the Southern Ocean. In a-c, separately for the Atlantic (orange), Pacific (purple), and Indian

Ocean (green). Note that the y-axes differ in each subplot. Thick solid lines have the seasonal cycle

smoothed with a 12-month moving average (first and last six months removed). The inserted map

illustrates the boundaries of the subregions.

investigate if this is a long-term decline or part of multi-decadal oscillations, such as the860

AMO. We know from previous studies that this weakening may be due to changes in the861

circulation, as suggested by DeVries et al. (2017) or linked to atmospheric circulation, as862

proposed by Keppler and Landschtzer (2019). An alternative hypothesis for these changes863

is that volcanoes are the driving force for such sudden changes (McKinley et al., 2020).864

However, during our study period, no large volcanic eruptions occurred that may explain865

the observed signals.866
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6 Caveats and Uncertainties867

Given the sparsity of DIC observations, our product fills substantial observational gaps868

in time and space. However, our evaluation with independent data provides confidence869

in the robustness of the presented numbers within the uncertainty limits. Nonetheless,870

there are good reasons to conclude that MOBO-DIC tends to underestimate the trend and871

interannual variability. Although this underestimation is within the uncertainty limits, it872

could be significant when integrating in the water column (see Main Text Section 4 and873

Supporting Information Sections S5 and S6). Further research should be conducted on this,874

especially as more data becomes available with future GLODAP releases and BGC Argo875

data.876

The uncertainties of the MOBO-DIC estimated sDIC at the level of a single grid cell877

are relatively large (global mean of 18 µmol kg−1) and are often larger than the signal in the878

trend or variability. As our mapping method minimizes the overall bias between the target879

data (i.e., the GLODAP DIC measurements) and the mapped estimate, we can assume880

that any local imprecisions average out when integrating or averaging over large areas. This881

means that MOBO-DIC is most robust when considering large areas, while analyses at single882

grid cells should be interpreted carefully, keeping in mind the uncertainty bounds. In this883

study, we present such integrals and averages over whole ocean basins.884

We want to note that the linear trend analysis used to quantify and assess the long-885

term changes in DIC has its limitations, too. First, it is not a given that the increase in886

oceanic carbon is, in fact, linear. Second, the linear trends are based on a relatively short887

period of 16 years, and thus, the conditions of the start and end years tend to considerably888

affect the trend over such a short period (Fay & McKinley, 2013). Furthermore, decadal889

variations might also affect the linear trends. We found that, locally, some trends are not890

robust (see Supporting Information Fig. S12) but anticipate that our global trend estimate891

is robust within the uncertainty, as overestimates of the trend in some regions are likely to892

be balanced by underestimates elsewhere.893

Our comparison with Cant also relies on many assumptions. First, as there is not yet894

a published estimate of Cant for the current period, we scaled previous estimates to our895

period, assuming a steady state (see Section 2.4). Further, our estimate of Cnat is based896

on the difference in the change in total sDIC and ∆Cant. However, due to the steady-state897

assumption when estimating ∆Cant, the difference may also contain an element of the non-898

steady-state component of anthropogenic ∆Cant. Thus, the analyses with Cant and Cnat899

could be improved in the future by using a Cant estimate of the same period.900

7 Summary and Conclusions901

This release of the Mapped Observation-Based Oceanic Dissolved Inorganic Carbon902

(MOBO-DIC) extends the climatological estimate by Keppler et al. (2020b) in time, thus903

giving insights into the spatiotemporal evolution of the ocean DIC stock at a monthly904

resolution from January 2004 through December 2019. With a spatial resolution of 1◦,905

extending from 65◦N to 65◦S, and until 80◦N in the Atlantic, and covering the entire upper906

and middle ocean (depths from 2.5 m to 1500 m on 28 uneven depth levels) this dataset907

provides a near-global view. We conducted an in-depth validation of our new data product,908

which considers sources of uncertainties from the measurements, representation errors, and909

uncertainties stemming from our mapping method. We trust that our estimate of DIC is910

robust within the uncertainty ranges provided (global mean uncertainty at the individual911

grid cell level of 18 µmol kg−1).912

Our analysis of the trend in sDIC provides the first direct assessment of the changes in913

the total sDIC stock (natural + anthropogenic) based on observations. It should be noted914

that at large scales, the changes in sDIC and DIC are numerically equal because the trend915

in salinity is negligible once integrated vertically and over large regions (Cheng et al., 2020).916
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Our estimate of the global increase of sDIC during our study period (3.2±0.7 Pg C yr−1)917

is approximately 31±7% of the anthropogenic CO2 emissions from fossil fuels and land use918

change during our study period (Friedlingstein et al., 2022). We find that this increase919

in sDIC is largely associated with the increase in anthropogenic carbon (Cant) during this920

period (2.8±0.4 Pg C yr−1 or 3.1±0.4 Pg C yr−1, depending on the method).921

MOBO-DIC also allows for the first assessment of changes in natural oceanic carbon922

(∆Cnat) by subtracting ∆Cant from the changes in the total sDIC, yielding a statistically923

insignificant global mean ∆Cnat of 0.4±0.8 Pg C yr−1 or 0.1±0.8 Pg C yr−1, depending on924

the method used to estimate Cant. Previous studies had suggested a potential outgassing of925

Cnat due to elevated sea surface temperatures (McNeil & Matear, 2013), which would affect926

the global climate. While the large uncertainties in MOBO-DIC and Cant do not rule out927

such a net outgassing signal of Cnat, we observe no statistically detectable change in Cnat928

between 2004 and 2020, in-line with the recent review by (Gruber et al., 2023). Instead,929

our analysis reveals a redistribution of Cnat - a phenomenon that had not been previously930

investigated at a global scale. During our study period, the upper ocean appears to have931

mostly lost Cnat, while below that, large parts of the ocean increased in Cnat. The loss932

of Cnat near the surface could be driven by increased ocean temperatures, as proposed by933

IPCC (2021). The redistributions in the Pacific correspond to the phasing of ENSO and934

the PDO, while the redistributions in the North Atlantic correspond to the phasing of the935

Multidecadal AMO. However, at this stage, our study period from 2004 through 2019 is too936

short to robustly conclude on (multi-) decadal signals.937

The interannual variability in sDIC is substantially weaker than the seasonal cycle and938

temporal trend in most parts of the ocean. However, it should be noted that MOBO-DIC939

likely underestimates the interannual variability. We find a mean standard deviation in time940

of detrended, deseasonalized sDIC at the depth level with the largest variability (150 m)941

of 2 µmol kg−1. Our results demonstrate that most of the global-scale variations in sDIC942

stem from the North and tropical Pacific, in correspondence with ENSO and the PDO, and943

to a lesser extent from the high latitude South Atlantic. We further find a weakening of944

the positive trend in the high-latitude South Atlantic around the year 2012. This signal is945

also visible in the global integral of sDIC, and future studies should examine the continued946

evolution of this signal as well as its drivers. The interannual variations are comparably947

weak in the other sectors of the Southern Ocean and the Indian Ocean.948

We can now constrain the ocean carbon sink from surface measurements in949

combination with riverine flux estimates (previous studies) and based on the direct DIC950

measurements that reflect the changes in the DIC pool at timescales from sub-annual to951

inter-annual (this study). While the surface-based estimates benefit from more952

observations, large uncertainties are associated with such an indirect approach. The953

interior perspective suffers from considerably less data but, due to the direct approach,954

does not need a riverine flux adjustment or gas transfer parametrization. The two955

perspectives each have their strengths and weaknesses, so having both perspectives956

substantially improves our understanding and the quantification of the global ocean carbon957

sink. The two estimates are in good agreement (3.2±0.7 Pg C yr−1 and 2.7±0.6 Pg C yr−1
958

for the interior and surface perspective, respectively), despite being based on independent959

data (SOCAT vs. GLODAP). However, the surface-based estimates would be larger (i.e.,960

closer to our estimate) when considering a larger riverine flux estimate (e.g.,961

0.8±0.4 Pg C yr−1 by Resplandy et al. (2018), compared to 0.6±0.4 Pg C yr−1 by962

Friedlingstein et al. (2022) used in this study). In addition, the agreement between the963

surface-based estimates and our interior ocean estimate would be even higher if the964

proposed temperature corrections were applied to the surface estimates. Specifically, Dong965

et al. (2022) estimated that accounting for these corrections would increase the ocean966

uptake of the surface pCO2 based products by 0.6 Pg C yr−1 from 1982 through 2020.967

Further, within the Global Carbon Budget (Friedlingstein et al., 2022), the observation-968

based methods that estimate the carbon fluxes based on surface measurements are higher969
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than the model-based estimates. Our analysis from the interior ocean perspective suggests970

that the true value likely lies closer to the observation-based surface estimates in the Global971

Carbon Budget than to the model-based estimates, as also suggested by Terhaar et al.972

(2022). Thus, the current approach of averaging all ocean carbon sink estimates from973

observations and models in the Global Carbon Budget could be revisited and improved to974

obtain the best estimate, e.g., by weighting the observation-based estimates stronger than975

the models.976

Our new data product is available for the scientific community and can be used to977

further investigate the temporal changes in DIC and its effect on marine organisms.978

Potential further insights into the processes and drivers could be gained by prolonging the979

timespan and investigating the multi-decadal variations. Additionally, our product980

provides the basis to compare the decadal variations of observation-based DIC to the981

changes in the upper Meridional Overturning Circulation, which weakened in the 1980s,982

strengthened in the 1990s, and weakened again in the 2000s (DeVries et al., 2017).983

Similarly, further comparing the decadal variations of the Southern Ocean carbon sink984

(Le Qur et al., 2007; Landschtzer et al., 2015; Keppler & Landschtzer, 2019) to the985

variations in the DIC pool in this region could lead to important new insights on the986

global carbon cycle.987
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The MOBO-DIC data product created during this study is freely available from1007

NCEI/OCADS:1008

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0277099.html and1009

should be cited as Keppler, Lydia; Landschützer, Peter; Lauvset, Siv K.; Gruber, Nicolas1010

(2023). Mapped Observation-Based Oceanic Dissolved Inorganic Carbon Monthly fields1011

from 2004 through 2019 (MOBO-DIC2004-2019) (NCEI Accession 0277099). [indicate1012

subset used]. NOAA National Centers for Environmental Information. Dataset.1013

https://doi.org/10.25921/z31n-3m26. Accessed [date].1014

The GLODAP DIC ship measurements are available at1015

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0237935/. The mapped1016

Argo-based fields of temperature and salinity are available at1017

https://sio-argo.ucsd.edu/RG Climatology.html. The WOA-mapped climatologies of1018

silicic acid, nitrate, and dissolved oxygen are available at1019

https://www.nodc.noaa.gov/OC5/woa18/woa18data.html. The atmospheric pCO21020
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based on the GlobalView xCO2 is available at1021

https://www.nodc.noaa.gov/ocads/oceans/SPCO2 1982 present ETH SOM FFN.html.1022

The mapped annual climatology of DIC is available at1023

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0162565/mapped/. The1024

time-series data from HOT, BATS, and Drake Passage are available at1025

http://hahana.soest.hawaii.edu/hot/hot-dogs/bextraction.html,1026

http://bats.bios.edu/bats-data/, and1027

https://www.nodc.noaa.gov/archive/arc0118/0171470/2.2/data/0-data/,1028

respectively. The DIC estimated based on BGC-Argo floats in the Southern Ocean1029

(SOCCOM floats) is available at http://soccompu.princeton.edu/www/index.html.1030

The OceanSODA surface DIC fields are available at https://www.ncei.noaa.gov/1031

access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0220059. The1032

MOBO-DIC monthly climatology is available at https://www.ncei.noaa.gov/access/1033

metadata/landing-page/bin/iso?id=gov.noaa.nodc\%3A0221526. The monthly1034

climatology of DIC by Broulln et al. (2020) is available at1035

https://doi.org/10.20350/digitalCSIC/10551. The data for Cant are available at1036

https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/ndp 100/1037

ndp100.html and https://www.ncei.noaa.gov/access/metadata/landing-page/bin/1038

iso?id=gov.noaa.nodc:0001644 for the periods 1800 to 1994 and 1994 to 2007,1039

respectively. We use the bathymetry from Etopo2 (2001), and the Multivariate El Niño1040

Index (MEI; Wolter and Timlin (2011); https://psl.noaa.gov/enso/mei/).1041
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