How does the 'window' of overland flow generating rainfall react to Clausius-Clapeyron scaling? **Bernhard H. Schmid**

Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, schmid@hydro.tuwien.ac.at

The Point of Departure

- In many regions, climate change is likely to trigger more frequent and more intense storms.
- The Clausius-Clapeyron relationship (7% increase in rainfall depth per degree of warming) is likely to describe the impact well in many cases.
- Rainfall on infiltrating hillslopes will cause overland flow, if long and intense enough.
- Before the background of a given IDF relationship infiltrating surfaces are associated with a window of overland flow generating rainfall durations.

The Problem

This window will be affected by climate change.

To what extent?

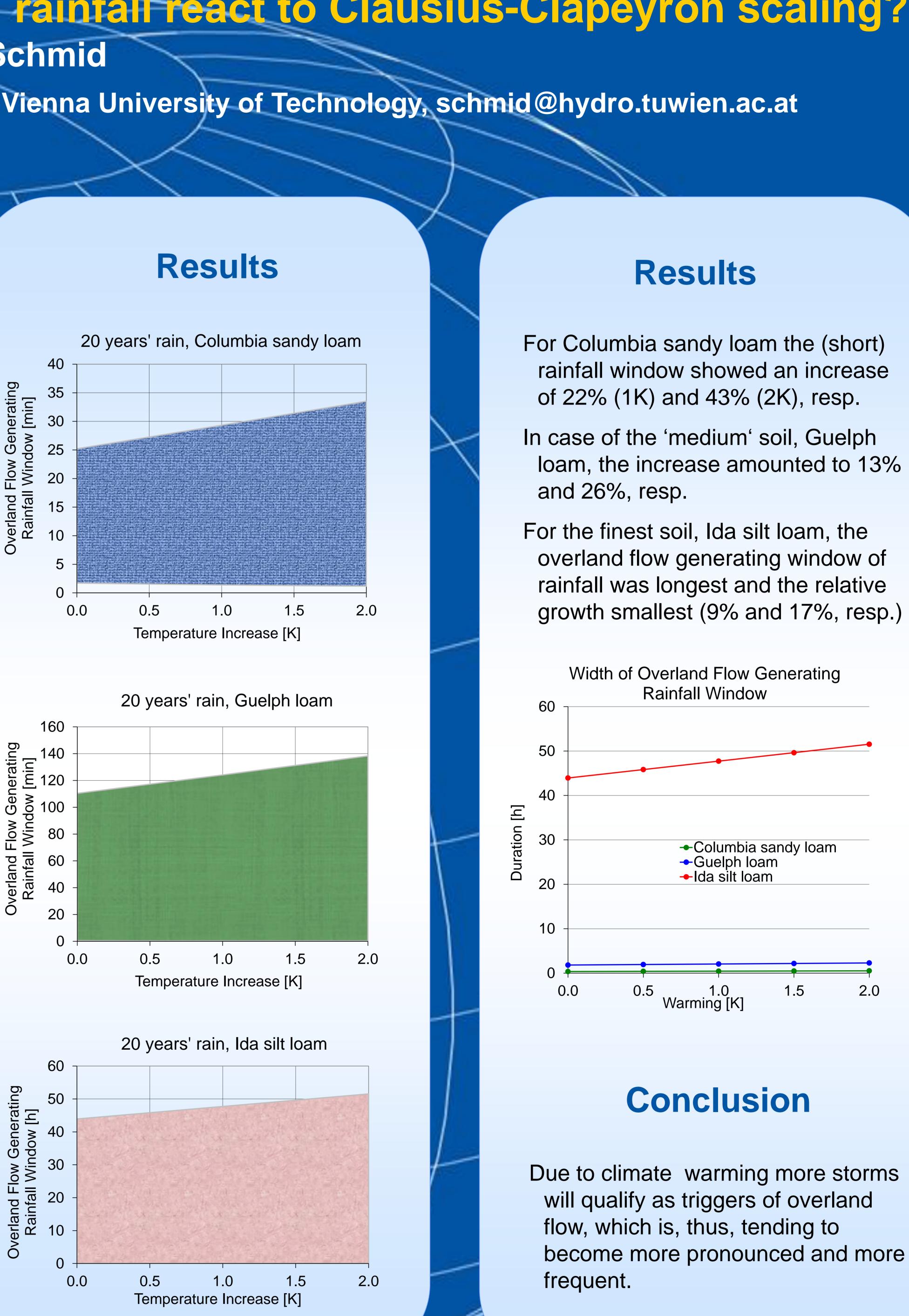
Method

Intensity-Duration-Frequency (IDF) relationship s · f

$$=\frac{1}{(t_d + b)^p}$$

with s, b and p denoting parameters and f the Clausius-Clapeyron scaling factor (1.07 K⁻¹).

For cases of p=1 a closed-form solution can be given:


$$\Delta t_{\text{window}} = \frac{\mathbf{s} \cdot \mathbf{f}}{\mathbf{K}_{\text{sv}}} \cdot \frac{\sqrt{(\mathbf{s} \cdot \mathbf{f} + \mathbf{b} \cdot \mathbf{K}_{\text{sv}} - \mathbf{u}_{0})^{2} + 4 \cdot \mathbf{b} \cdot \mathbf{K}_{\text{sv}} \cdot [\mathbf{u}_{0} - \mathbf{s} \cdot \mathbf{f} - \mathbf{S}_{\text{av}} \cdot (\mathbf{\theta}_{\text{s}} - \mathbf{\theta}_{\text{i}})]}{\mathbf{s} \cdot \mathbf{f} + \mathbf{S}_{\text{av}} \cdot (\mathbf{\theta}_{\text{s}} - \mathbf{\theta}_{\text{i}}) - \mathbf{u}_{0}}$$

with K_{sv} the vertical permeability of the soil, θ_i the initial water content, θ_{s} the saturated water content (both volumetric) and S_{av} the averaged suction at the wetting front.

Parameters

Soil	Κ _{sv} [m/s]	S _{av,max} [mm]	θ _s [-]	θ _ι [-]
Columbia sandy loam	1.39 · 10 ⁻⁵	238	0.516	0.300
Guelph loam	3.67 · 10 ⁻⁶	314	0.523	0.300
Ida silt loam	2.92 · 10 ⁻⁷	74	0.530	0.300

IDF: Return period (Austrian Alps): 20 years b = 540 ss = 59.7 mmp = 1.0Initial loss: $u_0 = 0.5 \text{ mm}$

