
Compatible Finite Elements
• The finite element method is a discretisation technique that seeks 

solutions in function spaces, suitable on non-orthogonal grids.
• Compatible discretisations make choices for spaces that preserve 

vector calculus identities and have desirable conservation and wave-
propagation properties.

• Gusto is a dynamical core toolkit, built in the Firedrake finite element 
library. It sets up compatible finite element spaces, and offers 
capabilities for different equation sets, different geometries and 
different time-stepping schemes.
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Background
• The shallow water equations are a widely-used simplified equation set 

for weather and climate modelling.
• Including moisture in the shallow water system introduces numerical 

complexities – new physics timescales and non-linear switch behaviour 
– that challenge time-stepping schemes.

• Test cases in moist shallow water models could be used to explore 
physics-dynamics coupling and how this is handled by time steppers.

• Aim: a suite of test cases in moist shallow water, using compatible 
finite elements. 

Next Steps
• What can we learn about time-stepping with physics and physics-

dynamics coupling from test cases in moist shallow water?
• Test cases that are closer to real-world dynamics.
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Moist Shallow Water Equations
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Test 2: Reversible Moist Advection
• Tests the advective component of the model with moist physics.
• A cosine bell is advected around the sphere, as in the first test of the 

Williamson et al. test suite. A prescribed saturation function causes 
conversions between water vapour and cloud and is designed so that 
the initial water vapour is recovered by the final timestep.

Figure 2: Results of the 
reversible moist advection 
test. An initial vapour cosine 
bell is converted between 
vapour and cloud as it is 
advected around the sphere, 
through a prescribed 
saturation curve that varies 
with latitude. The test aims 
to measure how well the 
total moisture is conserved 
in time.

Test 1: 1D Forced Advection

Figure 1: Saturation curve, 
initial water vapour profile 
and analytic rain solution for 
a forced advection test. The 
vapour profile is advected 
through the saturation profile 
to produce the rain solution.
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• Tests the moist physics capability.
• 1D transport of water vapour 𝑣! by a constant velocity 𝑢". Where the 

vapour exceeds a saturation function it is converted to rain, which can 
be compared to an analytic solution.

Test 3: Solid Body Rotation
• Tests the ability of the full model to maintain a steady state.
• Zonally balanced flow on a sphere from Zerroukat and Allen.
• Modifies test 2 of Williamson et al. to reflect the extra terms in the 

system, by adding balanced initial conditions for the buoyancy field b
and the moisture field q. 

Figure 3: Root mean squared 
error for the thermal solid body 
rotation test after 5 days for 
the height, velocity and 
buoyancy fields, at three 
different resolutions. The test 
aims to measure how well the 
initial conditions are 
maintained.

Test 4: Moist Flow Over Orography
• Tests the ability of the full model to produce cloud.
• Vapour is initialised everywhere close to saturation, in the style of the 

test from Zerroukat and Allen.
• The height-dependent saturation function causes cloud production near 

the mountain.

Figure 4: A snapshot of the 
cloud field during the moist 
flow over a mountain test. 
Cloud is generated near the 
mountain and is then 
transported around the globe 
by the flow.
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Our implementation of 
these equations sets in 
Gusto involves extending 
the compatible 
discretisation to include 
a DG space for the 
buoyancy and/or 
moisture fields. 
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the constant background height
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