

Facilitating the Development of Complex Models with the CCPP and its Single Column Model

Ligia Bernardet

NOAA GLOBAL SYSTEMS LABORATORY & DEVELOPMENTAL TESTBED CENTER

April 24, 2023 EGU Fall Meeting

Coauthors

Grant Firl^{1,5}, Dustin Swales^{3,5}, Man Zhang^{2,5}, Mike Kavulich^{3,5}, Samuel Trahan^{2,5} Weiwei Li^{3,5}, Jimy Dudhia^{4,5}, Lulin Xue^{3,5}, Mike Ek^{3,5}

¹Cooperative Institute for Research in the Atmosphere, Colorado State University, at NOAA GSL
²Cooperative Institute for Research in Environmental Sciences, University of Colorado, at NOAA GSL
³National Center for Atmospheric Research, Research Applications Laboratory
⁴National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Laboratory
⁵Developmental Testbed Center

Common Community Physics Package

CCPP Physics

- A library of physical parameterizations
- <u>https://github.com/NCAR/ccpp-physics</u>

CCPP Framework

- Software infrastructure that allows using the CCPP-Physics in a host model
- https://github.com/NCAR/ccpp-framework

CCPP Single Column Model

- A simple host model that employs the CCPP Physics and CCPP Framework
- https://github.com/NCAR/ccpp-scm

Motivations for the CCPP

COMMON COMMUNITY PHYSICS PACKAGE

Code Management

- Efficiency in physics development via centralization
- Process that facilitates research and transitions to operations

Interoperability to foster collaborations

• A synergistic resource for research, development, transitions, and operations

Hierarchical tools

- Promote process understanding and physics interactions
- Flexible for development; efficient for operations

Host Models Using CCPP

CCPP Single Column Model

• For hierarchical testing with CCPP

Unified Forecast System (UFS)

- For research and NOAA operations
- CCPP scheduled for upcoming NOAA operational implementations and public releases

US Navy Research Laboratory NEPTUNE model

• Using CCPP for pre-operational implementation tests

NCAR WRF, MPAS, CAM/CESM

- Framework development
- In various stages of experimental adoption of CCPP-compliant physics

CCPP v6.0 Public Release – June 2022

- Released as standalone (with SCM)
- Central hub: <u>https://dtcenter.org/ccpp</u>
- 23 supported schemes
- Online tutorial and documentation updated
 - SciDoc, TechDoc, and User's Guide
- Support provided via GitHub discussions
- Accepted manuscript Heinzeller et al. (GMD preprint)

CCPP v6.0 Supported Parameterizations & Suites

Туре	Operational	Developmental				
Suites	GFS_v16	GFSv17_p8	RAP	RRFS_v1beta	WoFS	HRRR
UFS regional						
SCM						
Microp	GFDL	Thomp	Thomp	Thomp	NSSL	Thomp
PBL	TKE EDMF	TKE EDMF	MYNN	MYNN	MYNN	MYNN
Sfc lay	GFS	GFS	MYNN	MYNN	MYNN	MYNN
Deep cu	saSAS	saSAS + CA	Grell-Freitas	N/A	N/A	N/A
Shal cu	saMF	saMF	Grell-Freitas	N/A	N/A	N/A
Radiation	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG	RRTMG
GWP	cires_ugwp	unified_ugwp	drag_suite	cires_ugwp	cires_ugwp	drag_suite
LSM	Noah	NoahMP	RUC	NoahMP	Noah	RUC

CCPP Architecture

Highlights

- Physics can be subdivided in groups and called from different parts of the host model
- Slow and fast physics possible
- Subcycling in slow physics is possible

CCPP Single Column Model Overview

- All CCPP schemes/suites are available to use with the SCM
- Decouples physics from dynamics for hierarchical studies
- Initialization from field program data
 - GASS/TWP-ICE (maritime convection; near Australia)
 - ARM Great Plains (continental convection)
 - EUCLIPSE/ASTEX (stratocumulus)
 - LASSO (shallow cumulus)
 - GABLS3 (mid-latitude continental)
 - Other cases offered through the DEPHY case repository

isture, and othe

Upcoming developments for next release

- New schemes
- Initialization from UFS history files
 - Enables more closely exploring the sources of UFS biases
- Parameterization simulator for SCM
 - Ability to run a single parameterization, all others forced by data models

Opportunities for Engagement

- CCPP hub at dtcenter.org/ccpp
 - Code, documentation, tutorial, support
- DTC Visitor Program (<u>dtcenter.org/visitors</u>)
 - Assess and improve parameterizations in CCPP
 - Add cases to Single Column Model, etc.
- CCPP Visioning Workshop
 - Virtual, week of August 14
 - Inform the community about capabilities
 - Discuss future direction

Summary

- Opportunities for collaborative physics development and testing
- Flexibility and configurability for research and development
- Performance for operations
- On track for first operational implementation at NOAA in 2023
- Being integrated onto Navy and NCAR models
- Public releases and workshops offer opportunities for engagement

Ligia Bernardet NOAA GLOBAL SYSTEMS LABORATORY AND DTC ligia.bernardet@noaa.gov

2023 CCPP Visioning Workshop (virtual, week of August 14, 2023)

What: discuss future direction for CCPP

Who

- CCPP project leads and developers
- Physics and atmospheric composition/chemistry developers
- Scientists working on coupling for ESMs, especially physics-dynamics coupling
- NOAA, NCAR, NRL, NASA, academia, private sector, etc.

Which models: UFS, SCM, NEPTUNE, SIMA etc.

Goals

- Inform the community about capabilities
- Gather input from developers/SMEs
- Discuss best practices for interoperability and collaborative development
- Create a prioritized list of required advancements for CCPP

Desired outcome

• Common understanding of the state of CCPP and prioritized requirements and needs to meet scientific and technological frontiers in the next 5-10 years