Changes and mechanisms of long-lived warm blobs in the Northeast Pacific in low-warming climates

Jian SHI shijian@ouc.edu.cn

collaborators: Cong TANG, Yu ZHANG, Shengpeng WANG, Chun LI,

Riyu LU, Tengfei YU, Ruiqi WANG, Ziyan CHEN

27 Apr, 2023@Vienna, EGU23

Motivation —— "The Blob"

Characteristics of The Blob:

- Extend from the Northeast Pacific to the Gulf of Alaska (GOA)
- Monthly sea surface temperature (SST) anomaly can exceed 3 °C
- Multi-year persistence from late 2013 to early 2016
- Originated at the oceanic surface and propagated downward and reached about 300 m

Why are Northeast Pacific and GOA important?

Climate effects of "The Blob"

Ecosystem effects of "The Blob"

Mechanisms of "The Blob"

Mechanisms of Northeast Pacific warm blobs

$$\frac{\partial}{\partial t}T = \frac{Q_0}{\rho C_p h} - u \cdot \nabla T - \left(w_h + \frac{dh}{dt}\right) \frac{(T - T_h)}{h} - \frac{k}{h} \frac{\partial T}{\partial z}\Big|_{z=h}$$

temperature tendency = surface heat flux + horizontal advection + vertical entrainment + diffusion

Mechanisms of Northeast Pacific warm blobs

(Amaya et al. 2020, NC)

Warm blob events

warm blob area:

40°N–50°N, 160°W–135°W

warm blob index

standardized monthly SST anomalies averaged over study area

warm blob event definition

intensity threshold: larger than 0.75 of warm blob index **duration threshold**: no fewer than 5 months with at most 1-month interruption

Model data

Model selection:

- Capturing the seasonality of long-lived warm blobs in the NEP
- Correlations of monthly SST STD in the study area between historical simulations and observations are significant at 0.05 significance level (Planton et al. 2018)

CMIP6 low-warming scenarios

- SSPI19 scenario: 7 models
- SSP126 scenario: 15 models

-SSPI-1.9: 1.9W/m² forcing, 1.5°C warming -SSPI-2.6: 2.6W/m² forcing, 2.0°C warming

Changes of temperature variability

- HIS: 1925-1974
- SSP1-1.9:2051-2100
- SSP1-2.6: 2051-2100

- The linear trends are removed for all the three periods
- Focusing on the effect of variability change on warm blob changes
- Amplification of seasonal cycle is identified in low-warming climates

Changes of timing of the warm blobs

\succ historical scenario:

- Peaking more frequently in cold seasons
- November, February, and May

Iow-warming scenarios

• Peaks shift to the boreal summer

Focusing on summer-peak cases in the following results

Intensity and duration changes of warm blobs

Changes of warm blobs in vertical distribution

- Stronger vertical temperature anomalies are identified under warming scenarios
- Significant shallower mixed layer depth is identified in spring and summer under SSPI19 scenario

green-dashed lines: historical scenario green-solid lines: warming scenario

Mechanisms for future warm blob changes

> development stage

- Surface heat flux anomalies dominate.
- Warming scenarios have larger positive anomalies.

decay stage

- Surface heat flux anomalies dominate.
- Warming scenarios have larger negative anomalies.

Warm blob changes: surface heat flux anomalies

Warm blob changes: surface wind and SLP anomalies

development stage

• Larger easterly anomalies under warming scenarios

decay stage

• Earlier westerly anomalies under warming scenarios

Warm blob duration and ocean memory

SCIENCE ADVANCES | RESEARCH ARTICLE

OCEANOGRAPHY

Global decline in ocean memory over the 21st century

Hui Shi¹*, Fei-Fei Jin²*, Robert C. J. Wills³, Michael G. Jacox^{4,5}, Dillon J. Amaya⁵, Bryan A. Black⁶, Ryan R. Rykaczewski^{7,8}, Steven J. Bograd⁴, Marisol García-Reyes¹, William J. Sydeman¹

Key notes

potential changes in low-warming climates

timing of peaks

shifting from cold seasons to summer

- summer peak intensity
- SSP1-1.9: increasing by 6.7% SSP1-2.6: increasing by 10.0%

duration

SSPI-1.9: decreasing by 31.0% SSPI-2.6: decreasing by 20.4%

potential mechanisms

atmospheric processes dominate

For more details, please refer to:

 Tang, C., Shi, J.*, Wang, S., Zhang, Y., Lu, R., Li, C., Yu, T., Wang, R., Chen, Z. (2023). Changes and mechanisms of long-lived warm blobs in the Northeast Pacific in low-warming climates. Journal of Climate, 36, 2277–2292.

Thanks for your listening.

Two types of warm blob events over 1951-2018

Characteristics of double-peak events

- They have a salient amplification at least 2 months after the first peak.
- average duration: ~10 months
- first peak: boreal winter
- second peak: following summer

Characteristics of single-peak events

- They have only one robust peak
- average duration: 6 months
- first peak: boreal winter

(Chen, Shi et al. 2021, IJC)

information of warm blob events

Start time	End time	Duration	Peak time	Peak intensity	Average intensity	Average NPGO
OCT 1961	SEP 1962	12	FEB 1962 JUL 1962	2.1 1.8	1.4	-0.1
JAN 1963	SEP 1963	9	FEB 1963 AUG 1963	2.5 2.7	1.9	-0.5
DEC 1990	JUL 1991	8	JAN 1991 JUN 1991	2.0 1.6	1.5	-0.6
NOV 2013	SEP 2014	11	JAN 2014 JUN 2014	3.1 2.0	1.8	-0.5
JAN 2015	NOV 2015	11	MAR 2015 AUG 2015	2.3 1.7	1.5	-1.4
Average				2.4* 2.0*	1.6*	-0.6*
Average Start time	End time	Duration	Peak time	2.4* 2.0* Peak intensity	1.6* Average intensity	-0.6* Average NPGO
Average Start time DEC 1956	End time MAY 1957	Duration 6	Peak time FEB 1957	2.4* 2.0* Peak intensity 2.4	1.6* Average intensity 1.8	-0.6* Average NPGO -1.3
Average Start time DEC 1956 AUG 1957	End time MAY 1957 DEC 1957	Duration 6 5	Peak time FEB 1957 NOV 1957	2.4* 2.0* Peak intensity 2.4 1.4	 1.6* Average intensity 1.8 1.0 	-0.6* Average NPGO -1.3 -1.0
Average Start time DEC 1956 AUG 1957 SEP 1985	End time MAY 1957 DEC 1957 MAR 1986	Duration 6 5 7	Peak time FEB 1957 NOV 1957 NOV 1985	2.4* 2.0* Peak intensity 2.4 1.4 2.0	 1.6* Average intensity 1.8 1.0 1.6 	-0.6* Average NPGO -1.3 -1.0 -1.2
Average Start time DEC 1956 AUG 1957 SEP 1985 SEP 1989	End time MAY 1957 DEC 1957 MAR 1986 JAN 1990	Duration 6 5 7 5	Peak time FEB 1957 NOV 1957 NOV 1985 DEC 1989	2.4* 2.0* Peak intensity 2.4 1.4 2.0 1.9	1.6* Average intensity 1.8 1.0 1.6 1.6	-0.6* Average NPGO -1.3 -1.0 -1.2 0.2
AverageStart timeDEC 1956AUG 1957SEP 1985SEP 1989OCT 1993	End time MAY 1957 DEC 1957 MAR 1986 JAN 1990 MAR 1994	Duration 0 6 5 7 5 6 6	Peak time FEB 1957 NOV 1957 NOV 1985 DEC 1989 NOV 1993	2.4* 2.0* Peak intensity 2.4 1.4 2.0 1.9 2.1	1.6* Average intensity 1.8 1.0 1.6 1.6 1.6 1.5	-0.6* Average NPGO -1.3 -1.0 -1.2 0.2 -2.2
Average Start time DEC 1956 AUG 1957 SEP 1985 SEP 1989 OCT 1993 NOV 2004	End time MAY 1957 DEC 1957 MAR 1986 JAN 1990 MAR 1994 MAY 2005	Duration 6 5 7 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Peak time FEB 1957 NOV 1957 NOV 1985 DEC 1989 NOV 1993 JAN 2005	2.4* 2.0* Peak intensity 2.4 1.4 2.0 1.9 2.1 1.9	1.6* Average intensity 1.8 1.0 1.6 1.6 1.5 1.4	-0.6* Average NPGO -1.3 -1.0 -1.2 0.2 -2.2 -1.2

Chen, Shi et al. 2021, IJC

SST anomaly pattern of warm blobs

The persistent warm blob over 2019-2020

- Duration: longest event with a 20-month duration from May 2019 to December 2020
- Intensity: second strongest case
- Multi-peak: four peaks in the evolution

Horizontal evolution of SSTA for 2019-20 warm blob

Vertical temperature evolution of 2019-20 warm blob

Driving factors of 2019-2020 warm blob

Nino3.4 evolution

Chen, Shi et al. 2021, GRL

NPO

The minimum number of models

- The minimum ensemble size is determined when the 5% and 95% percentiles are in the same sign.
 - By this definition, the minimum ensemble sizes are 7 SSP119 models (Fig. 1b) and 12 SSP126 models (Fig. 1c), both of which are within the numbers of the

corresponding selected models.

Timing shift: ALL months included

Warm blobs cases in all seasons

Tang, Shi, et al. 2022, JC, minor revision

Property changes

Vertical temperature anomalies in all seasons

Contribution of heat flux and mixed layer depth

$$\rho C_p \frac{\partial}{\partial t} T = \frac{Q_0}{h} - \rho C_p \left[u \cdot \nabla T + \left(w_h + \frac{dh}{dt} \right) \frac{(T - T_h)}{h} + \frac{k}{h} \frac{\partial T}{\partial z} \Big|_{z=h} \right]$$

temperature tendency = surface heat flux + horizontal advection + vertical entrainment + diffusion

Term I: contribution of Q'

Term II: contribution of mixed layer depth anomalies h'Term III: nonlinear interaction between Q' and h'

Probability of El Niño events in the following winter after the summer peak of warm blobs."*" and "***" indicate the difference exceeding the 0.1 and 0.01 significance levels based on student's *t* test.

El Niño	Historical_SSP119	SSP119	Historical_SSP126	SSP126
>1.5°C	0.0%***	26.1%***	10.7%	20.7%
>1.0°C	11.8%*	34.8%*	21.4%	36.2%
>0.5°C	29.4%	52.2%	39.3%	48.3%

Focusing on the location of warm blobs

Location of warm blobs and mixed layer depth

> Northeast Pacific warm blobs appear more frequently in areas with a shallow mixed layer

> We unify and re-define a larger region of 165°-130°W and 35°-50°N to study warm blobs

Vertical extent of warm blobs with mixed layer depth

winter, spring, autumn

Warm anomalies are mostly confined to mixed layers

summer

Large portion of warm waters can be stored beneath mixed layer due to its shoaling

Mixed layer depth

- usually becomes shallower
- may be related to the weaker wind speed and mixing in the upper ocean (Amaya et al. 2020; Bond et al. 2015)

solid line: actual MLD dashed line: climatological MLD

Shi et al. 2022, GRL