Observation space localizations for the maximum likelihood ensemble filter
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Background & Objectives Comparison to LETKF  Ensemble size is 20. ;. is optimized for each model.

 Ensemble Variational methods (EnVar) are
appropriate for indirect measur(ement)s SPEEDYISl| Obs: RH, U, V, T, Ps (error : 3.4 J/kg/m2)

nonlinearly related to forecast variables. H(x) = 0.5x{1 + (0.1 |x|)~"1
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e V" = ng -Z""R; Py~ H(=")] e LMLEFs outperform LETKF || . LMLEFG is much better
;" =RV [H(™ + Xp) — H(x™)] with stronger nonlinearity e LMLEFG shows faster when densely observed.
0‘; around y; are required to update Hj(x), or less observations. Improvement.  LMLEFL is relatively
which prevents independent analysis. e LETKEF Is unstable with  LMLEFL is better than better with sparse

Global optimization (LMLEFG) strong nonlinearity. LETKF In high latitudes. observations.
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and accurate analysis than LETKF.  §NH winter and vary with different

This is equivalent to optimizing sum of J..
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