# Mesoscale eddy parameterisation in numerical 'grey zone' ocean models



J. Mak, J. R. Maddison, D. P. Marshall, X. Ruan, Y. Wang & L. Yeow

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Eddy permitting models



Q. to parameterise, or not to parameterise?

figure from Helene Hewitt (UKMO)

・ロト・日本・日本・日本・日本・日本

### GM-based schemes in eddy permitting models

problems with using GM-based schemes?





(日)(同)(日)(日)(日)(日)

### Rationale for behaviour



◆□▶ ◆課▶ ◆注▶ ◆注▶ ─注 ─のへぐ

### Idea



<□> <@> < E> < E> = E = のへで

### Key ingredients

- 1. some splitting into a large and small-scale field
  - $\rightarrow$  diffusion-based horizontal filter based on

$$(1-L^2\nabla_H^2)^M\Theta_L=\Theta,$$

▲□▶▲圖▶▲圖▶▲圖▶ = 目 - のへで

 $\rightarrow$  cf. implicit solve of diffusion equation;  $M \ge 2$  allows L to be interpreted as a filtering length-scale (closely related to Matérn auto-covariance)  $\rightarrow M = 2, L = 100$  km here

### Key ingredients

- 1. some splitting into a large and small-scale field
  - $\rightarrow$  diffusion-based horizontal filter based on

$$(1-L^2\nabla_H^2)^M\Theta_L=\Theta,$$

うして ふぼう ふほう ふほう ふしつ

 $\rightarrow$  cf. implicit solve of diffusion equation;  $M \ge 2$  allows L to be interpreted as a filtering length-scale (closely related to Matérn auto-covariance)  $\rightarrow M = 2, L = 100$  km here

2. have  $u^*$  act only on large-scales

 $\rightarrow$  quite technical...try just having it act on everything first

### Key ingredients

- 1. some splitting into a large and small-scale field
  - $\rightarrow$  diffusion-based horizontal filter based on

$$(1-L^2\nabla_H^2)^M\Theta_L=\Theta,$$

 $\rightarrow$  cf. implicit solve of diffusion equation;  $M \ge 2$  allows L to be interpreted as a filtering length-scale (closely related to Matérn auto-covariance)  $\rightarrow M = 2, L = 100$  km here

2. have  $u^*$  act only on large-scales

 $\rightarrow$  quite technical...try just having it act on everything first

3. numerical implementation

 $\rightarrow$  NEMO, minor re-piping of data if letting  $u^*$  act on everything

### Key ingredients: use with GEOMETRIC

0 - -

$$\kappa_{\rm gm} = \alpha \frac{\int E \, dz}{\int (M^2/N) \, dz} \qquad [\kappa_{\rm gm} = \kappa_{\rm gm}(x, y, t)]$$
$$\frac{\partial}{\partial t} \int E \, dz + \nabla_H \cdot \left( \left( \tilde{u}^z - c_{\rm ros} \boldsymbol{e}_x \right) \int E \, dz \right) = \int \kappa_{\rm gm} \frac{M^4}{N^2} \, dz - \lambda \int E \, dz + \kappa_E \nabla_H^2 \int E \, dz,$$

(recently merged into NEMO 4.2 trunk; with thanks to Andrew Coward NOC)

4. energy consistency?

 $\rightarrow$  non-trivial things to be aware of, but basically use large-scale field information where applicable

▲ロト ▲ 帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

### Key ingredients: use with GEOMETRIC

$$\kappa_{\rm gm} = \alpha \frac{\int E \, dz}{\int (M^2/N) \, dz} \qquad [\kappa_{\rm gm} = \kappa_{\rm gm}(x, y, t)]$$
$$\frac{\partial}{\partial t} \int E \, dz + \nabla_H \cdot \left( \left( \tilde{u}^z - c_{\rm ros} \boldsymbol{e}_x \right) \int E \, dz \right) = \int \kappa_{\rm gm} \frac{M^4}{N^2} \, dz - \lambda \int E \, dz + \kappa_E \nabla_H^2 \int E \, dz,$$

(recently merged into NEMO 4.2 trunk; with thanks to Andrew Coward NOC)

4. energy consistency?

 $\rightarrow$  non-trivial things to be aware of, but basically use large-scale field information where applicable

Q. CONSTANT total eddy energy with changing resolution,

parameterised + explicit = constant?

 $\rightarrow$  fixed total energy but represented in different forms?

### Some results: reduced damping



୍ରର୍ତ

### Some results: energy constancy?



FIXED GEOMETRIC parameter choice,  $\alpha = 0.06$ ,  $\lambda^{-1} = 80$  days (filtering with L = 100 km)

 $\rightarrow$  almost energy constancy with changing resolution?

- $\rightarrow$  seems robust with fixed  $\alpha, \lambda^{-1}$  for sample calculations
- $\rightarrow$  R100 energy level could be tuned down with  $\alpha \nearrow$ ,  $\lambda^{-1} \searrow$ ?

#### Some results: mean state sensitivities



varying wind forcing calculations, circumpolar transport

 → almost eddy saturation in thermal wind in GEOM + filtered
 calculations

 $\rightarrow$  no GM case looks good in terms of fluctuations, but has various issues in the mean state response

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

#### Conclusion

$$\boldsymbol{u}^* = -\nabla \times (\kappa_{\mathrm{gm}} \, \boldsymbol{s}), \qquad \boldsymbol{s} = \frac{\nabla_H b}{\partial b / \partial z},$$

Existing approaches:

▶ modifies κ<sub>gm</sub> directly

ightarrow control magnitude, but keep *s* and so  $u^*$  a full-scale field

backscatter

 $\rightarrow$  damp first, then write it back in?

Here we ask for a large-scale *s*:

controls both magnitude <u>and</u> spatial variation of u\*

- $\rightarrow$  keep the fluctuations, but add in a bit of GM
- $\rightarrow$  scale-aware energy levels, parameterised + explicit  $\approx$  constant

▲ロト ▲ 帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

 evidence for improved mean-state as well as sensitivities in eddy permitting channel models

#### Outlooks

- Q. not inconsistent with backscatter, but don't need that much of it?  $\rightarrow$  not hitting the explicit eddies that much in the first place
- Q. global model response in the physics  $\rightarrow$  interesting to see impact in Southern Ocean in ORCA025?
- Q. impact on modelled biogeochemistry (EGU23-2513, OS3.1, Thurs 2pm session, Room L2, speaker: <u>Xi Ruan</u>)

 $\rightarrow$  no GM case, MOC too strong, nutrient supply and NPP too large

 $\rightarrow$  GEOMETRIC + present approach damps the MOC a bit, reasonable nutrient supply and NPP

▲ロト ▲ 帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q (~

 $\rightarrow$  (speculated) if only backscatter, drive a larger MOC, even larger discrepancy?

# BGC response in NEMO gyre model

|          | NPP (CTRL) | NPP (CC) | $\Delta$ NPP (CC) | comment          |
|----------|------------|----------|-------------------|------------------|
| R12      | 3.67       | 3.17     | -13.8%            |                  |
| R4       | 3.91       | 3.46     | -11.5%            | supply too large |
| R4 split | 3.62       | 3.18     | -12.2%            |                  |



Advective nitrate supply (1012 mmol N day-1)

<□> <@> < 注 > < 注 > < 注 > のへで

# (ロ)(母)(言)(言) 言)の(の

# Diffusive filter: $(1 - L^2 \nabla_H^2)^2 \Theta_L = \Theta$



elliptic solve done here through Richardson iteration

 $\rightarrow$  could do e.g. CG given  $(1-L^2\nabla_H^2)$  is 'nice' for fixed grid spacing

 $\rightarrow$  convergence based on  $\|\cdot\|_\infty$ 

filter only every model day for cost reasons

 $\rightarrow$  large-scale field not expected to vary too fast anyway?

 $\rightarrow$  weak sensitivity to filtering frequency in sample calculations (for frequencies below a month)