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Abstract

High-resolution climate archives of the Late Holocene are essential in the study of paleoclimatic dynamics and for understand-
ing the importance of natural and anthropogenic influences on past and future climate changes. Here, we present well-dated X-
ray fluorescence scanning records retrieved from a varved sediment core from Lake Kusai. These records show the decadal- to
centennial-scale paleoclimatic variability of the northern Qinghai-Tibetan Plateau over the last 2000 yr. Ca is mainly related to
the precipitation of authigenic carbonates and is a proxy for temperature changes. The Ca record of Lake Kusai is
well-correlated with the variations and periodicities of solar activity. Therefore, solar output can be suggested as being the
predominant forcing mechanism of decadal- to centennial-scale temperature fluctuations over the last 2000 yr. The evolution
of effective moisture was inferred from the log-ratios of Rb/Sr, which demonstrated synchronous changes with the
typical Indian summer monsoon record from Dongge Cave. These results indicate that the decadal- to centennial-scale
effective moisture evolution of the northern Qinghai-Tibetan Plateau is mainly influenced by the Indian summer
monsoon. Additionally, we have not found the evident periodicities of solar activity in our effective moisture record over
the last 2000 yr.
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INTRODUCTION (An et al., 2001). The paleoclimatic records of the QTP
have been well-studied based on lacustrine sediments in dif-
ferent regions (Gasse et al., 1991; Shen et al., 2005; Herz-
schuh, 2006; Zhu et al., 2008; Herzschuh et al., 2014).
These records, however, are mostly concentrated on millen-
nial to orbital timescales, and little is currently known
about the paleoclimatic changes of the northern QTP at the
decadal to centennial timescales.

Records from Lake Kusai show that paleoclimatic
changes at decadal to centennial timescales are mainly
influenced by the Asian monsoon and have a close relation-
ship with solar activity (Liu, X., et al., 2009). The chronol-
ogy obtained from bulk organic carbon, however, is
relatively low resolution and is affected by a 3400-yr
reservoir effect. To better understand decadal- to
centennial-scale paleoclimatic changes and their forcing
mechanisms in the northern QTP over the last 2000 yr,
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The last 2000 yr is a crucial period for the study of past global
changes (PAGES, 2009; Yan et al., 2015). High-resolution
paleoclimatic records for the last 2000 yr are particularly needed
to evaluate the increasing impact of human activity and to help
us predict the possible evolution of future climate. Accordingly,
numerous studies based on stalagmites (Zhang et al., 2008; Tan
et al., 2010), lake sediments (Liu, X., et al., 2014a; Li et al.,
2017), ice cores (Thompson et al., 2000), tree rings (Shao
et al., 2005; GrieBinger et al., 2017), and historical documents
(Tan et al., 2008) have been performed to shed light on the
paleoclimatic changes in China over the last 2000 yr.

The Qinghai-Tibetan Plateau (QTP) is thought to play a
key role in the evolution of Asian atmospheric circulation
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STUDY REGION

Lake Kusai (approximately 35°37'-35°50'N and 92°35'-93°
05'E, 4475 m above sea level [asl]), a saline inland lake with a
present-day salinity of 28.54 g/L, is situated in the Hoh Xil
region of the northern QTP, northwest China (Fig. 1A). The
area of the lake is 254.4 km?, with a catchment of approxi-
mately 3700 km®. The lake is fed mainly by the Kusai
River, which originates to the west of the lake on the Daxue
Mountain (5863 m asl). The Kusai River flows into the south-
western part of the lake, which is rather shallow and has a
mean water depth of approximately 10 m. The lake is much
deeper in the northwest, however, where the depth is approx-
imately 50 m (Li, 1996; Wang and Dou, 1998), and the
sedimentary environment is stable and experiences less
disturbances than that in the southwest. Modern meteorolog-
ical records indicate a mean annual temperature of the lake
area of approximately -5.4°C, a mean annual precipitation
of approximately 275 mm, and a potential annual evaporation
of approximately 1300 mm, resulting in a strongly arid
climate.

The climate of the northern QTP is affected by both Asian
monsoonal systems and the mid-latitude westerly circulation
(An et al., 2012; Yao et al., 2013). In the summertime, the
lake basin is more humid with atmospheric precipitation
and glacial meltwater, both of which can increase the runoff
of the Kusai River and enhance the erosional degree of the
catchment. In contrast, the region is characterized by a dry
and cold continental climate in the winter. The Hoh Xil
region experiences the highest frequency of dust storms in
the Qinghai Province between February and April (Fang
et al., 1997).

MATERIALS AND METHODS

We drilled a 1.52-m-long sediment core (KSD-1) in the north-
west of Lake Kusai at a water depth of 49.8 m using the
UWITEC platform of Austria (Fig. 1B; http:/www.uwitec.at).
A short core (17 cm) was also collected parallel to the long
core using a gravity corer. All sediment cores were stored in
PVC tubes in the field. The short core was sampled at
0.5-cm intervals, and its slices were radiometrically dated
by measuring the activity of '°Pb and '*’Cs as a function
of depth. The sedimentation rates and chronologies were
calculated using the >'°Pb data and the constant initial con-
centration (CIC) and the constant rate of supply (CRS) models
(Appleby and Oldfieldz, 1983; Oldfield and Appleby, 1984;
Appleby, 2001).

Due to the low pollen concentrations and the absence of
terrestrial plant macrofossils in the cores, the '*C dating of
total organic carbon samples was performed using accelerator
mass spectrometry (AMS). Ten samples from the long sedi-
ment core were processed and dated at the National Isotope
Centre, Institute of Geological and Nuclear Sciences, New
Zealand (Table 1).

The sediment cores of Lake Kusai are rhythmically lami-
nated. The long core was split along the central axis. Undis-
turbed sediment slabs (7x1.5x1cm) were collected
continuously down core with 2 cm of overlap between two
consecutive slabs to ensure that all couplets of laminations
were represented. All sediment slabs were placed in alumin-
ium boxes and frozen quickly by liquid nitrogen in approxi-
mately 15 minutes. The slabs were subsequently freeze-dried
for 48 hours to remove the residual moisture and then embed-
ded in low-viscosity epoxy resin under low vacuum.
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Figure 1. (color online) (A) Map showing the climatic system of China including the Indian Summer Monsoon (ISM), the East Asian Summer
Monsoon (EASM), and the Westerlies. The locations of Lake Kusai and other paleoclimate sites mentioned in this paper, including the Guliya
ice core (Yao et al., 1996), Dunde ice core (Thompson et al., 2006), Ngamring Tso (Conroy et al., 2017), Paru Co (Bird et al., 2014), and
Dongge Cave (Wang et al., 2005), are indicated. (B) The coring site of Lake Kusai. Bathymetry was measured in 2002.
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Table 1. AMS '*C ages and reservoir-corrected '*C ages obtained for core KSD-1.

14C age Reservoir-corrected '*C age by
Sample number Lab ID Material Depth (cm) (yr BP) 3200 yr (yr BP)
KSD-1-42 NZA 50891 TOC 21 3454 £21 254 +21
KSD-1-63 NZA 50892 TOC 31.5 3611 +21 411 +21
KSD-1-96 NZA 50893 TOC 48 3614 £22 414 £22
KSD-1-133 NZA 50894 TOC 66.5 411522 915+£22
KSD-1-163 NZA 50895 TOC 81.5 4196 +23 996 +23
KSD-1-190 NZA 50896 TOC 95 4656 + 28 1456 +28
KSD-1-225 NZA 50897 TOC 116.5 4750 £ 23 1550 £23
KSD-1-251 NZA 50898 TOC 129.5 5135+23 193523
KSD-1-280 NZA 50899 TOC 144 5161 +£23 1961 £23
KSD-1-318 NZA 50900 TOC 163 5248 +23 2048 +£23

Following the procedures above, sediment slabs were cut
lengthwise and ground to a thickness of approximately
50 um. Optical microscope analyses were performed to
count the laminations. We counted at least three times to
ensure data quality and consistency. We estimated an approx-
imate 1% error in ages based on the replicated counts.
Nondestructive XRF measurements on split long core
surfaces at 0.5-cm resolution were performed with an Itrax
XRF core scanner (Croudace et al., 20006) at the Institute of
Geology and Geophysics, Chinese Academy of Sciences.
All elements were measured at an X-ray voltage of 30 kV
and a current of 55 mA. The data are semiquantitative and
provide relative fluctuations in the chemical element compo-
sitions as counts per second (cps; Croudace et al., 2006;
Rothwell and Rack, 2006; Lowemark et al., 2011).

RESULTS AND DISCUSSION

Varve structure

The seasonal rhythms of climate induce recurrent yearly
changes in sedimentary input and varve formation (Haltia-
Hovi et al., 2007; Zolitschka et al., 2015). The basic couplet
structure in Lake Kusai was found to be composed of dark-
and light-colored lamina. The thin dark layers composed of
coarse sand and silt, mainly quartz, feldspar, and mica,
were formed by aeolian processes during winter. The light
layers were relatively thick and consisted of authigenic car-
bonates and fine-grained clay minerals. These laminae were
explained as representing summer season accumulations
during which carbonates were deposited (Liu, X., et al.,
2014b; Chen et al., 2016).

Chronology

An apparent rise in '*’Cs activity occurred at approximately
3.5 cm in the short core and can probably be explained by
the onset of major fallout in AD 1954 in the Northern Hemi-
sphere. The peak of '¥’Cs at approximately 3 cm corresponds
to AD 1963, which is the peak of world nuclear weapon
testing (Fig. 2A; Pennington, 1973). The '*’Cs-based

chronology is generally in good agreement with the varve-
based chronology but does not agree well with either 2'°Pb
model (CIC and CRS), an aspect which needs to be studied
in the future.

The age (**C)/depth correlation for the Lake Kusai records
is shown in Figure 2B. A comparison of the '*’Cs-based ages
at a depth of 4 cm (AD 1950 or O yr BP) with the linearly fit-
ted '4C age at the same level, which was determined by inter-
polation among the ten AMS '*C ages, suggests that the
radiocarbon age is in excess of the '*’Cs age by 3200 yr.
This phenomenon can be ascribed to the reservoir effect,
which is widespread in the radiocarbon dating of lacustrine
sediments in western China, particularly in saline lakes on
the QTP (Herzschuh, 2006; Morrill et al., 2006; Liu, X.,
et al., 2008a; Hou et al., 2012). Ten AMS "“C ages from
the long core have a high linear correlation (R*=0.9654),
which demonstrates that the hydrochemical conditions were
stable, and the magnitude of the reservoir effect had no obvi-
ous changes. Thus, we assumed an invariable 14C reservoir
effect over the time scale of the long core and subtracted a
value of 3200 from all "*C ages prior to calibration. The age-
depth model was constructed by the Bayesian method
(Blaauw and Christen, 2011) and calibrated using the
IntCal09 dataset (Reimer et al., 2013). The varve age agrees
well with the calibrated '“C age, which proves that the lami-
nations of the long core are varves and that the varve-based
chronology is suitable for analyzing the decadal- to
centennial-scale paleoclimatic changes of Lake Kusai. Our
chronology in this study is based on the varve age. The chro-
nology spans from approximately AD 31 to AD 2010, when
the core was collected.

Temperature variations in Lake Kusai and their
relationship with solar activity

Previous studies have indicated that the carbonates deposited
in the sediments of Lake Kusai are predominately authigenic
in origin, as a result of chemical and biochemical processes,
and are mainly composed of aragonite (Yao et al., 2011). The
deposition of authigenic carbonate is complex and influenced
by many factors, such as temperature, salinity, and the
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Figure 2. (color online) (A) Dating results of the varve and 137¢g ages from the short core. (B) Varve and AMS e ages (after e ages were

reservoir corrected by 3200 yr) from the KSD-1 long core.

primary productivity of lakes (Kelts and Hsii, 1978), but tem-
perature is the most important influencing factor (Liu, X.,
et al., 2008b; Li and Liu, 2018). Increases in temperature
can result in increased carbonate precipitation based on the
following mechanisms: (1) decreases in the solubility of
CaCO;5 (Conroy et al., 2014); (2) the evaporation of the
lake region is enhanced, leading to the enrichment and super-
saturation of Ca** and CO3~ in lake waters and thus facilitat-
ing the preferential precipitation of carbonates (Xiao et al.,
2006; Mishra et al., 2015); (3) algae photosynthesis assimi-
lates a high amount of CO, (aq) (Opitz et al., 2012), which
can lead to the supersaturation of CO3~ and promote the dep-
osition of carbonates; and (4) increases in the abundance of
cyanobacteria, which serve as nuclei for carbonate precipita-
tion (Hodell et al., 1998). Ca is mainly associated with the
mineral CaCOj (Cohen, 2003), which is the main component
of authigenic carbonates in lake sediments. Therefore,
we consider temperature to be closely related to fluctuations
in Ca.

To verify this link, we compared the Ca record of Lake
Kusai with the 8'®0 record from the Dunde ice core (Thomp-
son et al., 2006) and the temperature reconstruction of the
QTP based on multiple proxy records (Fig. 3; Yang et al.,
2003). The fluctuations in the three curves are similar at the
centennial time scale, and the small discrepancies among
the three records possibly reflect errors in chronology. The
Pearson correlations for the Ca record with the ice core record
(R=0.63, P<0.01, n=256) and the temperature reconstruc-
tion of the QTP (R =0.22, P <0.01, n =363) are significant at
the centennial time scale. During the last 2000 yr, three
distinct high-temperature episodes that occurred in AD
31-175, 475-1400, and 1900-present correlate well with

the Roman Warm Period, Medieval Warm Period , and Cur-
rent Warm Period, respectively. Between these three warm
episodes are two low-temperature periods in AD 175-475
and 1400-1900, which might correspond to the Dark Age
Cold Period and Little Ice Age, respectively. These warm
and cold periods were also reported by other temperature
records in China (Yang et al., 2002; Ge et al., 2013), which
further demonstrates that the temperature fluctuations in the
northern QTP were consistent with those of other areas over
the last 2000 yr.

The role of solar activity on the Earth’s climate system and
its influence at a variety of temporal and spatial scales have
been widely discussed (Beer et al., 2000; Bard and Frank,
2006; Saarni et al., 2016). Previous studies have demon-
strated that the cosmogenic radionuclide '°Be can be used
to reconstruct solar activity beyond the limits of instrumental
records (Berggren et al., 2009; Adolphi et al., 2014). In gene-
ral, variations in temperature are positively correlated with
solar activity at decadal to millennial timescales (Wiles
et al., 2004; Usoskin et al., 2005; Liu, Y., et al., 2009).
Thus, we compared the detrended Ca record (ACa) from
Lake Kusai to the detrended total solar irradiance record
(ATSI) reconstructed by 9B (Fig. 4; Steinhilber et al.,
2009). The fluctuations in Ca are generally in good agreement
with the variations in TSI at decadal (R=0.2, P<0.01,
n=392) and centennial (R=0.34, P<0.01, n=374) time-
scales over the last 2000 yr. The results reveal a positive cor-
relation between solar activity and temperature variations at
decadal to centennial timescales.

Furthermore, this result is also supported by cross-wavelet
transform (XWT), a method for examining common period-
icities and relative phases in time-frequency space between
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Figure 3. Comparison of the Ca record from Lake Kusai with different paleoclimatic signals over the last 2000 yr. (A) The grey and black lines
represent the decadal and centennial variations in the 8'0 record from the Dunde ice core, respectively (Thompson et al., 2006). (B) Ca record
from Lake Kusai. The superimposed smoothed curve emphasizes the centennial long-term variations. (C) Temperature changes in the QTP
reconstructed by various paleoclimatic proxy records (Yang et al., 2003).

two records (Fig. 5; Grinsted et al., 2004). We noticed that the
Ca and TSI records exhibit a broad band of common frequen-
cies extending from ~210 yr to 40 yr that are significant at a
95% confidence level relative to the red noise spectrum. More
importantly, both records show a clear positive correlation
with the highest power at periodicities of approximately
210 yr, which is similar to the de Vries/Suess solar activity
cycle (~210 yr; Suess, 1980; Wagner et al., 2001; Huang
and Tian, 2018). Our results show that the temperature fluctu-
ations reflected by the Ca record reveal a high multi-decadal

Decadal: r=0.2**

to centennial-scale spectral coherency with solar activity. In
conclusion, solar output was the likely primary forcing factor
of decadal- to centennial-scale temperature changes in the
northern QTP over the last 2000 yr.

Fluctuations in effective moisture over the last
2000 yr

Rb, being chemically similar to K, is often enriched in fine-
grained clay mineral assemblages (Koinig et al., 2003;

Centennial: r=0.34**
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Figure 4. Comparison between the detrended TSI record (ATSI) reconstructed from the cosmogenic radionuclide '’Be data (red line; Stein-
hilber et al., 2009) and the detrended Ca record (ACa) from Lake Kusai (green line) over the last 2000 yr. Correlations between two records are
shown above the figure. The double asterisk denotes a significant correlation at the 99% confidence level. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Liu, X, et al., 2014a). Sr is generally a substitute for Ca in
authigenic carbonates and coprecipitates within lake sedi-
ments (Cohen, 2003; Croudace and Rothwell, 2015). Sr can
be dispersed in minerals containing Ca (e.g., aragonite and
anorthose) with an isomorphism relationship due to their sim-
ilar ionic radii. Our Sr record shows a strong positive correla-
tion with the Ca record (R=0.77, P<0.01, n=335), which
demonstrates that Sr was mostly coprecipitated with Ca rather
than derived from allochthonous detrital input. In general,
increases in regional effective moisture lead to increases in
river runoff, which can enhance the degree of catchment ero-
sion and carry high levels of Rb into lakes with fine-grained
detrital input. Thus, we used the Rb/Sr ratio to indicate the
variations in effective moisture (Heymann et al., 2013) in
Lake Kusai over the last 2000 yr. To avoid the closed-sum
effect and show the relative fluctuations of the curve (Weltje

Decadal: r=0.44**
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and Tjallingii, 2008), we used the log-ratios of Rb/Sr as the
index to delineate effective moisture fluctuations in this study.

To verify the reliability of our effective moisture index, we
compared the log (Rb/Sr) data from Lake Kusai to the glacial
accumulation record from the Guliya ice core (Yao et al.,
1996) over the last 1700 yr (Fig. 6). Over this time interval,
the Pearson correlation coefficients of the two records reach
high values at decadal (R=0.44, P<0.01, n=337) and cen-
tennial (R=0.66, P<0.01, n=319) timescales.

The stalagmite record of Dongge Cave has been widely
interpreted as a proxy for the intensity and precipitation of
the Indian summer monsoon (ISM) throughout the Holocene
(Dykoski et al., 2005; Wang et al., 2005). To further investi-
gate the forcing mechanism of effective moisture variations in
the northern QTP, we compared the log (Rb/Sr) data of Lake
Kusai with the radiometrically dated §'®0 record from

Centennial: r=0.66**
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Figure 6. Comparison of the log (Rb/Sr) data from Lake Kusai (blue line) and the glacial accumulation record from the Guliya ice core (red
line; Yao et al., 1996) over the last 1700 yr. The thin and thick lines indicate the fluctuations at decadal and centennial timescales, respectively.
Correlations between the two records are shown above the figure. The double asterisk denotes a significant correlation at the 99% confidence
level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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stalagmites in Dongge Cave at the decadal to centennial time-
scales (Fig. 7). The results show that the effective moisture
variability of Lake Kusai reflected by the log-ratios of Rb/
Sr is well-related to ISM strengthening, as indicated by the
880 record from Dongge Cave, at decadal (R=—0.26, P <
0.01, n=392) and centennial (R=-0.45, P<0.01, n=374)
timescales. These results imply a positive correlation between
the effective moisture variations and the intensity of the ISM
over the last 2000 yr, which might demonstrate that the ISM

can affect not only low-latitude regions but also mid-latitude
regions (the northern QTP; Liu, X., et al., 2009; Ramisch
et al., 2016). Thus, our results indicate that the decadal- to
centennial-scale effective moisture variations in Lake Kusai
over the last 2000 yr can be mainly ascribed to the response
to the ISM.

Furthermore, our result has also been evidenced by hydro-
climatic records from other monsoon-influenced lakes in the
southern QTP. We compared the log (Rb/Sr) data of Lake
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Figure 8. Time series of log (Rb/Sr) from Lake Kusai compared with other hydroclimatic records from the southern QTP. (A) Log (Rb/Sr)
record from Lake Kusai. The superimposed smoothed curve emphasizes the centennial long-term variations. (B) Paru Co PC1 grain size (Bird
et al., 2014). (C) Ngamring Tso reconstructed summer (JJAS) precipitation (Conroy et al., 2017).
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Figure 9. Cross-wavelet analyses of the TSI record (Steinhilber et al., 2009) with (A) the log (Rb/Sr) record and (B) the 8'80 record from
stalagmites over the last 2000 yr (Wang et al., 2005). Common spectral strengths are shown by colours ranging from deep blue (weak) to
deep red (strong). The region without lighter shading delineates a range in which the identified frequencies can be interpreted. The irregular
black curves delineate a 95% confidence level against the red noise signal. The small arrows illustrate the phase differences between the two
data sets: the arrow pointing right is in-phase, the arrow pointing left is out-of-phase, and other angles are shown in proportion to phase dif-
ferences. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Kusai with the Paru Co lake-level curve (Bird et al., 2014)
and the Ngamring Tso reconstructed summer (JJAS) precip-
itation (Fig. 8; Conroy et al., 2017). The fluctuations in the
three curves are similar, which indicate that the moisture
variability of both northern and southern parts of QTP have
been driven by the ISM during the last 2000 yr. Paleoclimatic

records in the northern QTP, however, remain scarce. Hence,
this conclusion needs to be further proven by more high-
resolution records in the future.

As an important component of the global monsoon system
(Wang et al., 2017), the ISM has a profound influence on the
moisture variations of East Asia. Asian monsoonal system
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intensity at millennial or orbital timescales is predominantly
affected by changes in solar activity and insolation (Wang
et al., 2005; Liu, J., et al., 2009; Cheng et al., 2016). The reli-
ability of this assertion, however, is still under debate for short
timescales. For example, as an indicator of ISM intensity, the
8'®0 record from Dongge Cave does not agree well with the
residual atmospheric 14C record (Stuiver, 1998) at the decadal
time scale in the Holocene (Wang et al., 2005) and in the last
2000 yr. Thus, we performed cross-wavelet analyses of the
TSI record (Steinhilber et al., 2009) with the log (Rb/Sr)
record from Lake Kusai and with the §'%0 record from
Dongge Cave (Wang et al., 2005) over the last 2000 yr
(Fig. 9). Neither record revealed the evident common period-
icities with solar activity at decadal to centennial timescales,
even though they shared some frequencies. This result might
demonstrate that the decadal- to centennial-scale effective
moisture variations in the northern QTP were not directly
controlled by solar activity over the last 2000 yr. This
phenomenon has also been reported by other paleoclimatic
studies (Yao et al., 1996; Ekdahl et al., 2008; Zhao et al.,
2011; Yang et al., 2014; Conroy et al., 2017), and its under-
lying mechanisms remain ambiguous. At short timescales,
many internal factors of climate systems, such as atmospheric
circulations, large-scale ocean-atmosphere processes, and
human activities, can also influence regional hydroclimatic
conditions (PAGES, 2009; Bird et al., 2016; Conroy et al.,
2017; PAGES Hydro2k Consortium, 2017), and this topic
still needs to be studied in the future.

CONCLUSIONS

Based on the high-resolution XRF scanning records from
1.52-m-long succession of varved sediments from Lake
Kusai, we draw the following major conclusions:

(1) At decadal to centennial timescales, the Ca record is a
proxy for temperature changes, which correlates well
with the variations and periodicities of solar activity.
These results indicate that solar output was the likely
primary forcing mechanism of decadal- to centennial-
scale temperature fluctuations over the last 2000 yr.

(2) The decadal- to centennial-scale variability of the effec-
tive moisture of Lake Kusai, which is reflected by the
log-ratios of Rb/Sr, was mainly influenced by the ISM
over the last 2000 yr. However, we have not found obvi-
ous periodicities of solar activity in our effective mois-
ture record. This finding indicates that the evolution of
decadal- to centennial-scale effective moisture in the
northern QTP might not have been directly controlled
by solar activity over the last 2000 yr.
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