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Motivation

Trash screens are tools used to prevent debris and people from
entering critical parts of a river network:

Clean trash screen

Debris can pile up at the screen and block the waterway and
provoke floods
Trash screen maintenance is essential to prevent floods

» Cameras have been installed to monitor the state of the trash

screens

» Manual observation is tedious
Our goal: propose deep learning based methods to automate the
monitoring process
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Dataset

South-West Environment Agency website:

» 54 trash screens with CCTV camera feeds

» 70,000 images downloaded over 10 months (Feb - Nov 2022)
Manual labelling of the images using a small Python script

» Three possible labels: clean, other and blocked

clean other blocked

» 40,000 clean images; 10,000 blocked images; 20,000 other
images
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» 46 training cameras, 4 validation cameras, 4 test cameras
> Test cameras chosen manually

» Good balance between clean and blocked images
» Different fields of view
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Methodology

» 46 training cameras, 4 validation cameras, 4 test cameras
> Test cameras chosen manually

» Good balance between clean and blocked images
» Different fields of view

Crinnis Mevagissey Barnstaple Siston
Compare deep learning approaches to detect the blockage

Constraint: one global model (no retraining per camera)
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1. Generic methods
The model is directly applied on the new trash screen camera

Anomaly detection

Anomaly » Difference
detector from training

State-of-the-art method

Classification

—»|Classifier —» {‘Blocked’, ‘Clean’}

ResNet-50 backbone (Padim?):
» Trained over blocked and » Trained over all images
clean images > No labelling needed
» OQutputs a confidence score » Each image is represented
for blocked and clean by a vector of features
categories » Outputs the difference with

training images

! Defard et al. Padim: a patch distribution modeling framework for anomaly detection and localization. |ICPR,
AN



1. Generic methods: results

Classifier Anomaly
Detector
Crinnis 92.15%  83.33%
Mevagissey 95.08%  70.06%
Barnstaple  90.42%  83.46%
Siston 70.98%  73.97%
Average 87.16% 77.71%

» Classifier obtains the best results

» Outperforms the state of the art based on predictions from

river parameters? (74% accuracy).

2Streftaris et al. Modeling probability of blockage at culvert trash screens using Bayesian approach. Journal of

Hydraulic Engineering, 2013.
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2. Camera-specific methods
Takes advantage of labelled images from the new camera

Image similarity

-
Siamese e )
network | » {'Similar’, ‘Different’}

»

Siamese network

» Computes the difference between two images of the same
camera

» Different if one is blocked and the other is clean, Similar
otherwise

> Labelled images of the new camera are used as reference
images



Camera-specific methods: results

Siamese Network

Anomaly detector

N=1 N=5 N=50 N=1 N=5 N=50
Crinnis 94.30% 99.05% 99.43% | 93.54% 94.72% 98.19%
Mevagissey 96.70% 96.91% 96.93% | 80.14% 83.63% 75.51%
Barnstaple  96.05% 95.66% 96.39% | 77.16% 77.34% 67.82%
Siston 90.42% 95.86% 96.48% | 87.25% 91.83% 93.32%
Average 94.37% 96.87% 97.31% | 84.52% 86.88% 83.71%

N is the number of labelled images from the camera
The siamese network greatly increases the results, even with N=1

» Same backbone as the classifier

» Smaller improvements after N=5
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Efficient new approach to monitor trash screen blockage
» Quickly detects the blockages

» Benefits from a few number of labelled images from the
camera (5 or less)
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Efficient new approach to monitor trash screen blockage
» Quickly detects the blockages

» Benefits from a few number of labelled images from the
camera (5 or less)

Future work
» Night-time monitoring

» Provide more information (e.g., % of trash screen surface
blocked, water-level,...)

» Practical integration
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