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Introduction, slate belt of Taiwan
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 Deep-seated gravitational 
slope deformation (DSGSD) 
dominated by cleavage is 
widely distributed.

 Landslide prone area from 
disaster history.

 Contain half of key large 
landslides of Taiwan.

Landslides during 2009 Typhoon Morakot Key large landslides announced in 2022



Introduction, study area: Chingjing region, Taiwan
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 Hot spot
(Protected objects)

(Photos credits: https://www.cingjing.gov.tw/eng/)



(After Lin et al., 2020)

Introduction, why is the Chingjing region
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 Hot spot
(Protected objects)

 Large landslides 
have been 
identified from 
morphology.

 Relative long-
period and 
complete previous 
surveys.



Introduction, motivations & objectives
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Motivation:
 DSGSDs originate from deep structure regulation, then manifest slope 

morphology changing, and could transfer into rockslides.
 In the study area, large landslides recognized previously seem to be at 

different stages in the DSGSD process.
Objective:
 The geological models of the large landslides in the study area were 

inferred mainly based on borehole data and inclinometers. Can the 
geological model be supported by mechanical modeling and provide 
more information on the DSGSD process? 

 Large landslides in the study area have been monitored mainly based on 
GNSS. A survey approach with higher spatial coverage is necessary to 
assist the identification/characterization of the DSGSD’s activity.



Parameter Definition Value Unit

ρ Density 2,700 kg/m3

K Bulk modulus 5.00 GPa

G Shear modulus 3.75 GPa

C Cohesion 132.43 kPa

σt Tension 131.90 kPa

Φ Friction angle 34 °

Parameter Definition Value Unit

kn Normal stiffness 5.00 GPa

ks Shear stiffness 5.00 GPa

Cj Cohesion 0 MPa

σj
t Tension 0 MPa

Φj Friction angle 10 °
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Parameter Definition Min. value Max. value Steps Unit

α Slope angle 25 50 5 °

β Joint dip angle 60 80 10 °

H Slope height 200 400 100 m

Methodology, distinct element modeling
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Rock mass properties described by 
Mohr-Coulomb constitutive model (Weng et al., 2017, 2022)

Discontinuity properties for 
the Mohr-Coulomb constitutive law

Set-up for the parametric study

 Focus on the models with 35° and 40° slope angles, 80°

cleavage dip angle and 300-m slope height in the following. 
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Results, DSGSD process
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Results, internal structures of the DSGSD
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Results, evidences from the boreholes
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Basal shear zone Structure variation 
DY-B2 (A) DY-B3 (A)

~20 m

~15 m

borehole acoustic televiewer

(borehole data are obtained from the CGS of Taiwan)

DY-B1
DY-B2

DY-B3
Dip to East (cataclinal)

Dip to West (anaclinal)
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Methodology, PSInSAR analysis
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 Sentinel-1 A
 Time interval: 

2018 – 2020 (3 years)
 Number of images:

• 90 for ascending track
• 87 for descending track

 Processors:
• stacking of coregistered: 

ISCE2 (Fattahi et al., 2017; Rosen 
et al., 2012)

• time-series analysis: 
StaMPS (Hooper et al., 2004



Results, validation of the PSInSAR products
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LU01 (Reference station)

CN06

CN07

LOS time-series validation
(project GNSS to LOS direction)

Decomposed VH & VV validation
(compare with total displ. From GNSS)

LU03

(GNSS is maintained by Prof. Kuo-Lung Wang 
at the National Chi Nan University)

Total displacement from GNSS in 2018-2020 



Results, kinematic movement & present-day activity
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DSGSD Rockslide



Results, DSGSD characterization 
from PSInSAR products 

dip-in daylight
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dip-in daylight
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dip-in daylight

in the DSGSD stage
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Concluding remarks
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Distinct element modeling: 
 captures the full process of DSGSD in the cataclinal slopes (cleavage dip direction 

parallels to the topographic downslope direction)
 reproduces the features of deep structures and basal shear zone observed in the 

borehole data
 recognizes the kinematic movement of DSGSD process at any location in a slope

PSInSAR analysis:
 provides high spatial coverage velocity data to improve delineation
 demonstrates the characterization of DSGSD stage based on kinematic movement 

(decomposed displacement vectors)
 sheds light on future monitoring strategy for DSGSDs in the slate belt of Taiwan 
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