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➢A time span of two decades, from 2001 to 2020, was considered for this

study.

➢This study made use of four high-resolution precipitation data sets

(Table.1).

➢Considering the different spatial-temporal resolutions, all the estimates

were resampled to a common 0.25˚ × 0.25˚and monthly time scale.

➢The measure of spread (i.e., range) among the datasets was considered as

the measure of uncertainty.

Table.1 Summary of the datasets used in this study.

Fig.2 a) Range and , b) Relative range (i.e., range divided by the ensemble mean precipitation) for 

different precipitation quantiles.

Fig.3 Zonal distributions of mean monthly precipitation over the tropical oceans for the period of 

2001 – 2020.

➢The tropical oceans receive a substantial volume of precipitation and

evapotranspiration, have a greater impact on Earth's energy and water

balance.

➢Yet, considerable studies have been focused on the Earth's terrestrial

precipitation, whereas very little attention has been given to the oceanic

region.

➢In this context, we comprehensively examine the uncertainties of different

precipitation estimates over the tropical oceans.

Study region

➢This study is focused on the tropical oceans, covering an extent of 30˚N - S

in both the hemisphere (Fig.1).

Fig.1 Spatial distribution of mean monthly precipitation (mm) of four-member ensemble for the 

period of 2001 – 2020.
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Name Spatial scale Record length Reference

IMERG 0.1˚ × 0.1˚ 2000 – 2022 Huffman et al. (2019)

CMORPH 0.25˚ × 0.25˚ 1998 – 2021 Joyce et al. (2004)

ERA5 0.25˚ × 0.25˚ 1959 – 2022 Hersbach et al. (2020)

MSWEP 0.1˚ × 0.1˚ 1979 – 2022 Beck et al. (2019)
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Fig.4 Spatial distribution of range (mm/month) among the data sets for the period of 2001 –

2020.

Fig.5 Spatial distribution of relative range (%) among the data sets for the period of 2001 –

2020.

The regions with high-precipitation exhibit the highest 

uncertainties among the precipitation estimates, while the 

regions with low- precipitation exhibit the lowest 

uncertainties. However, when considering the relative range, 

the pattern is opposite.
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