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H(X ) = −
∑

x ϵX
p(x) logb p(x)

h(X ) = −
∫

S
f (x) logb f (x)dx
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H(X ) H(X ,Y ) DKL(p||q) I(X ;Y )

(...) establishing of such applications is not a trivial matter of translating
words to a new domain, but rather the slow tedious process of hypothesis
and experimental verification.

Shannon (1956)
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UNITE toolbox v0.1

Collection of methods to estimate information-theoric quantities from data.
binned frequencies, KDE, kNN.

Inspired by and reliant on NumPy and SciPy .
Simple and easy to use (with some care).
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UNITE toolbox v0.1

Collection of methods to estimate information-theoric quantities from data.
binned frequencies, KDE, kNN.

Inspired by and reliant on NumPy and SciPy .
Simple and easy to use (with some care).

UNITE Example

April 21, 2023

[1]: from scipy import stats

dist = stats.norm(loc=0.0, scale=0.6577)
samples = dist.rvs(size=(10_000, 1), random_state=42)

[2]: from unite_toolbox import knn_estimators

est_h = knn_estimators.calc_knn_entropy(samples)
print(f"Est. H = {est_h:.3f} nats")
print(f"True H = {dist.entropy():.3f} nats")

Est. H = 1.002 nats
True H = 1.000 nats

[ ]: import numpy as np
from scipy import stats
from infotheory_toolbox import bin_estimators

dist = stats.multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
samples = dist.rvs(size=(10_000), random_state=42)

bins = bin_estimators.estimate_ideal_bins(samples, counts=True)
for key in bins.keys():

print(f"{key} -> {bins[key]}")

[ ]: print(f"True entropy = {dist.entropy():.3f} nats")

[ ]: est_h = bin_estimators.calc_bin_entropy(samples, [46, 50])
print(f"Entropy = {sum(est_h):.3f} nats")

[ ]: type(est_h[0])

[ ]:

1
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Estimator Assessment Applications in Model Evaluation
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Estimator Assessment Applications in Model Evaluation
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Attert catchment

Data available from the Catchments as
Organized Systems (CAOS) project.

Area = 247.32 km2

Precipitation inputs from three stations:
Roodt (55%), Reichlange (36%) and
Useldange (9%).1

Temperature (USL), humidity (USL), wind
speed (ROD), net radiation (MER).

Discharge measured at Useldange

Periods available:
Training: 01.11.2012 → 31.10.2015
Testing: 01.11.2015 → 31.10.2016

Gauges

Drainage network

Attert river catchment

Elevation (m.a.s.l.)

Administrative borders

Symbology

1Area averaged precipitation when required.
University of Stuttgart 7
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Models
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sSHM - (simpler) Simple Hydrological Model

Lumped hydrological model adapted from
Ehret et al. (2020).

sSHM was implemented in
(Paszke et al., 2019).

Three storage components [su, si , sb] and
five parameters [su,max , β, perc, ki , kb].

University of Stuttgart 8
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Optimization
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Dimensionality reduction

Principal component analysis (PCA) to reduce from parameter space (5-d) to PCA
space (2-d).

Loadings: each PC is given by the linear
combination of the original variables:

PC1 = w11X1 + w12X2 + · · ·+ w1pXp

Parameter PC0 PC1
sumax 0.459 -0.319
beta 0.416 -0.674
perc 0.474 0.036

ki 0.455 0.393
kb 0.430 0.538
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PCA
In the training set:
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Probabilistic sSHM

Equifinality: rejection of an optimal model in favour of multiple possibilities for
producing simulations that are acceptable (Beven and Freer, 2001).
GLUE (generalized likehood uncertainty estimation) → ABC (approximate
Bayesian computation).
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LSTM

LSTM is a recurrent neural network (RNN) where the cell and hidden states of
the network are able to store long time dependencies in the data.
Monte Carlo dropout for uncertainty (Klotz et al., 2022).
64 internal states.
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LSTM (cont.)
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Evaluation
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sSHM - Entropy
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sSHM - KLD
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LSTM - Entropy
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LSTM - KLD
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Metrics - Summary

sSHM
NSE = 0.78
KGE = 0.81
avg. H = 0.84 bits
avg. KLD = 5.24 bits

LSTM
NSE = 0.79
KGE = 0.75
avg. H = 0.57 bits
avg. KLD = 5.87 bits
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Metrics - Summary (cont.)
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Hybrids
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sSHM → LSTM
Concept adapted from Chabok (2022) and Frame et al. (2021).
Post-processing of the conceptual model to boost performance.
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sSHM → LSTM

NSE = 0.80
KGE = 0.85
avg. H = 0.60 bits
avg. KLD = 5.55 bits
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sSHM → LSTM (cont.)
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ANN → sSHM
Predicting sSHM model parameters through a simple artificial neural network
(ANN).
Dynamic model.
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ANN → sSHM (cont.)

University of Stuttgart 25

University of Stuttgart 33



ANN → sSHM (cont.)
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Information Theory

Entropy

h(X ) = −
∫

S
f (x) log(x)dx

Entropy as a measure of variability.

Kullback–Leibler Divergence

D(f ||g) =
∫

G
f log

(
f
g

)

KLD as a measure of the predictive
capacity.

Mutual Information

I(X ;Y ) = H(Y )− H(Y |X )

Reduction in entropy by conditioning.
Mutual dependence between variables.

I(X ;Y ) = H(X ) + H(Y )− H(X ,Y )

University of Stuttgart 4
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Framework

Initial proposal by Gong et al. (2013).
BAP: best achievable performance.
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Joint Mutual Information

I(xi ;Y ): relevance of a single input on the target.
I(X ;Y ): relevance of a set of input features on the target.
Estimation of high-dimensional mutual information, from samples, using
non-parametric density estimators.
Plug-in estimators: quantization (binning), kernel density estimates, k -nearest
neighbours.
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kNN Estimators

If p(x) is an unknown probability mass function, the kNN density of p at xi is:

p̂k (xi) =
k

n − 1
· 1

c1(d) · ρd
k (i)

Where:
c1(d): is the volume of a d-dimensional unit ball.
ρd

k (i): is the distance between xi and its kth nearest neighbour.
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kNN Estimators (cont.)

Entropy

h(X ) = −
∫

S
f (x) log(x)dx

Kullback–Leibler Divergence

D(f ||g) =
∫

G
f log

(
f
g

)

Mutual Information

I(X ;Y ) =

∫

Y

∫

X
P(X ,Y )(x , y) log

(
P(X ,Y )(x , y)
PX (x)PY (y)

)
dx dy
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kNN Estimators (cont.)

Entropy (Kozachenko and Leonenko, 1987)

Ĥ(X ) = ψ(N)− ψ(k) + log(cd) +
d
N

N∑

i=1

log(ϵ(i))

Kullback–Leibler Divergence (Wang et al., 2009)

D̂(f ||g) = d
N

n∑

i=1

log

(
ν(i)
ρ(i)

)
+ log

(
M

N − 1

)

Mutual Information (Kraskov et al., 2004)

Î(X ;Y ) = ψ(k)− 1
N

N∑

i=1

E
[
ψ(ni,x) + ψ(ni,y )

]
+ ψ(N)
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kNN Entropy
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kNN Entropy (cont.)

University of Stuttgart 13

University of Stuttgart 45



kNN Entropy (cont.)
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kNN KLD

University of Stuttgart 15

University of Stuttgart 47



kNN KLD (cont.)
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kNN MI
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kNN MI (cont.)

I (X1,X2...Xm−1;Xm) = −1
2
log

(
1 − ρ2

)
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kNN MI → Ishigami Function

f (X ) = sin(x0) + 7 · sin2(x1) + 0.1 · x4
2 · sin(x0)
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kNN MI → Ishigami Function (cont.)

f (X ) = sin(x0) + 7 · sin2(x1) + 0.1 · x4
2 · sin(x0)
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kNN MI → Ishigami Function (cont.)
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kNN MI → Ishigami Function (cont.)
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kNN MI → Ishigami Function (cont.)
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Thank you!

Manuel Álvarez Chaves

manuel.alvarez-chaves@simtech.uni-stuttgart.de

+49 711 685-60130
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