1 Chronometric levelling

- Optical clocks are sensitive to gravity field variations according to Einstein's theory of relativity
- The ticking rate of a clock lifted by 1 cm on Earth surface changes by a factor of 10⁻¹⁸
- Frequency comparisons between high-performance clocks in networks enable chronometric leveling for establishing a unified global height system

3 Estimation of complex errors in local height systems

Static errors in local height systems (LHS)

- Height equation : $H_{i}^{L} = H_{i}^{U} + a^{L}\Delta X + b^{L}\Delta Y + c^{L} + t^{L}\Delta S + m^{L}(H_{i}^{L}/500)$
- The datum of the re-unified system is assumed to be the datum of $(c^{L} = 0)$

True error (a, b, c, t, m) between the local height systems and the a-priori height system before of a unification (left). Residual error between the unified height systems and a-priori height system after clockbased unification (right)

- The RMS error of the re-unified system with the a-priori system is of the order of ~1 cm and the standard deviations of the errors estimated reach maximum values for c^L of 3-4 cm
- A further goal is to optimize the number of clocks and their spatial distribution

Spatial distribution of clocks in each LHS

- For estimating tilts, clock sites should be selected at points which correspond to max. and min. values of each tilt
- For estimating offsets, a clock site that is least affected by systematic tilts is important

DHHN92 vs. DHHN2016 (German Main Height Network) -**Elevation changes between new realizations**

Assuming we have clock observations at the two epochs

1)
$$C_{i}^{92} = C_{i}^{16} - \Delta C_{i}$$
 2) $\Delta W_{ii}^{16} - \Delta W_{ii}^{92} = \Delta C_{i} - \Delta C_{i}$

- As a simple case (or in a more general way), we just assumed $A \sim 3 \text{ cm}, \lambda \sim \frac{2}{3} \text{ r}, \emptyset \sim \frac{11}{2}$ the variation as a cosine wave from south to north: $\Delta C_i = A \cos(\mathbf{k} r_i + \mathbf{0})$
- Repeated regression by changing wavelength:

55.0 [°] N	and the second	0.04
52.5 [°] N	• • •	0.02
		eight [m
50.0 [°] N		Ť -0.02
٥	· · · · ·	-0.04
47.5 N		
	7.5 [°] E 10.0 [°] E 12.5 [°] E 15.0 [°] E	

Assumed error

Poster ID:

EGU23 - 4316

		/		
based adjustment				
Estimated parame	eters of	the	periodic	func

Wave length (m)	Phase (rad)	Amplitude (m)
5.930667e+05	1.5128	0.0366

Unification of Height Systems using Chronometric Geodesy - A More Realistic Scenario

Asha Vincent and Jürgen Müller

Institut für Erdmessung (IfE), Leibniz Universität Hannover, Germany

2 Height system unification

Height system unification involves the estimation of complex errors (systematic tilts and biases, etc.) between the local height systems

Estimation of errors in height systems

loop Closed adjustment for estimating latitudinal tilt (a), longitudinal tilt (b), offset (c), tide gauge tilt (t), mountain tilt (m), noisy leveling line tilt (n), etc.

$$H_i^L = \frac{C_i^U}{\gamma_i} + biase$$

 $H_{i}^{L} \rightarrow$ Height of the leveling point in the local system $H^{U_i} \Rightarrow$ Height of the leveling point in the unified system

 $\Delta W_{ii} = W_i^{U} - W_i^{U} = -(C_i^{U} - C_i^{U}) + RN$

Clock observation equation between clock sites i and j in terms of geopotential number (C)

4 Tidal correction on clock observations

Tidal correction applied with (10%) model error

Height equation: $H_{i}^{L} = H_{i}^{U} + a^{L}\Delta X + b^{L}\Delta Y + c^{L}$

6 Future perspectives

Clocks are expected for the realization of an international height reference system.

 \bigcirc core clock W_p or C_p

- national clock W_{P} or C_{P}
- transportable clock

A hybrid clock network (different types of clocks as well as various frequency link techniques) for the realization of an international height reference system.

EGU | Vienna | Austria 23 – 28 April, 2023

simulations using clock-based

ses + RN

(Clock-based adjustment) Comparison (reunified system with the a priori system)

20° W 10° W 0° 10° E 20° E 30 **Classified** height systems

True error (a, b, c) between the local height systems and the a-priori height system before unification (left). Residual error between the unified height systems and a-priori height system after clockbased unification (right)

used 4 🖢 in each LHS

5 LHS with different frequency standards

of only 10⁻¹⁷ (~ 0.1 m)

of good clocks

Acknowledgments

This study has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC 2123 Quantum Frontiers - Project-ID 90837967 and the SFB 1464 TerraQ - Project-ID 434617780 within project C02.

References

- 1607.
- scales. Metrologia, 53(6), 1365.
- Springer, Cham.

Leibniz Universität

Tidal correction on clock observations

- In real scenarios, the clock observations are affected by various tidal effects such as solid earth tide (SET), ocean tide loading (OTL), pole tide (POL), etc.
- As clocks rest on the deformable earth surface, the effective potential variation due to mass change and corresponding surface deformation has to be considered

$$\Delta W_{ij} = W_i^{U} - W_j^{U} = -(C_i^{U} - C_j^{U}) + RN$$

- (\Delta C_i^{U} - \Delta C_j^{U})

 ΔC_i (t) is the summed tidal effects at clock location i

Model errors applied for realistic simulation of clock observations

 Through a weighted adjustment, the unification can still be improved, even when two clocks in each LHS have an uncertainty

Height equation: $H_{i}^{L} = H_{i}^{U} + a^{L}\Delta X + b^{L}\Delta Y + c^{L}$

used 4 lin each LHS

True error (a, b, c) between the LHS & the apriori system before unification (left). Residual error between the unified systems & a-priori system 40 after unification (right)

Adjusted error

20° W 10° W 0° 10° E 20° E 30° E

• The accuracy of bias estimation depends on spatial distribution

Spatial distribution of good clocks and worse clocks (red) in each LHS

1. Wu, H., Müller, J., & Lämmerzahl, C. (2019). Clock networks for height system unification: a simulation study. Geophysical journal international, 216(3), 1594-

2. Voigt, C., Denker, H., & Timmen, L. (2016). Time-variable gravity potential components for optical clock comparisons and the definition of international time

3. Wu, H., Müller, J. (2020). Towards an International Height Reference Frame Using Clock Networks. In: Freymueller, J.T., Sánchez, L. (eds) Beyond 100: The Next Century in Geodesy. International Association of Geodesy Symposia, vol 152.

Asha Vincent -hannover.de {vincent@ife.uni-hannover.de}