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Why?

@2 Non-CO; aviation effects contribute to ~ 2/3 of the climate impact
and are characterised by high uncertainties [1]

' Since the impact depends strongly on emission location, what if we
could get flights to avoid climate sensitive regions?

Climate-sensitive regions
/ ~ Cost-optimal
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Climate change functions (CCFs)

CCFs [2] — global climate impact due to emission at (x,t) —
expensive and restrictive
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Surrogate model (aCCFs)
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Surrogate model (aCCFs)

Q Reproduce CCF predictions by other means?
|~ Linearly regress CCFs against atmospheric variables — aCCFs:

aCCFo, =0"w, 0 =<T,$,Td >
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Surrogate model (aCCFs)

Q Reproduce CCF predictions by other means?
|~ Linearly regress CCFs against atmospheric variables — aCCFs:

aCCFo, =0"w, 0 =<T,$,Td >

e Regional flight planning on arbitrary days
© Reasonable first estimate [3] but improvements are desirable
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Towards a new surrogate model

l

Objective approach to feature selection
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Towards a new surrogate model

CCM data
Predictions

Climate model parameters High cost
0,o,...,T f(®,9,...,T)

- — Chemistry-climate model (CCM) —— —

1
l Train : I Predict
\4
— > Probabilistic surrogate model

2> m ~
O20ck Y = f(0) +<(6)
Feature selection Low cost

Gaussian process regression is a Bayesian nonparametric approach that can capture more
information about D = {4, y} with error bars as data grows: p(f|D) « p(f) p(D|f)
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Results

» Feature selection yields # € R®: Temperature, geopotential, solar
irradiance, specific humidity, zonal velocity, and release location

6/17



Results

» Feature selection yields # € R®: Temperature, geopotential, solar
irradiance, specific humidity, zonal velocity, and release location

» Full distribution for (predicted) climate impact Y on test space

—— CCM data
—— Standard GP
0.4 —— Chained GP

0.0
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Results

» Performs significantly better than Linear regression (R? = 0.54)

» Linear Regression model: Using selected features (R?> = 0.13) vs
original features (R? = 0.05)
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Results

» Performs significantly better than Linear regression (R? = 0.54)

» Linear Regression model: Using selected features (R?> = 0.13) vs
original features (R? = 0.05)

1e-5 1e-5
Standard GP 8 ¢ Standard GP
Linear Regression e Linear Regression

=) o

[N}

Surrogate mode! predictions
IS

Surrogate mode! predictions
IS

CCM data le-5 CCM data le-5

7/17



Results

» Comparing test data and predictions V 6

» Violin plot shows variance of every prediction in the test space
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Results
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Results

4 Standard GP 4 Chained GP
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Results
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Results
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Results
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Summary

» R2 > 0.50 for GP models, while Dy, is lower for chained GP model

» Analyse statistical ‘outliers’
» We have a model that predicts the climate impact of aviation NO,
with (varying) confidence levels
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Take away?
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Climate Change Functions (CCFs) _
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Deterministic aCCFs ‘Probabilitic surrogate model
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Regional flight planning [3] _
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