EGU General Assembly

Towards a new surrogate model for predicting short term NO_x - O_3 effects from aviation using Gaussian processes

Pratik Rao, Richard Dwight, Deepali Singh, Jin Maruhashi, Irene Dedoussi, Volker Grewe, and Christine Frömming

23rd - 28th April 2023

Why?

Non-CO₂ aviation effects contribute to $\sim 2/3$ of the climate impact and are characterised by **high uncertainties** [1]

Since the impact depends strongly on emission location, what if we could get flights to avoid **climate sensitive regions**?

Climate change functions (CCFs)

CCFs [2] \rightarrow global climate impact due to emission at $(x, t) \rightarrow$ expensive and restrictive

Surrogate model (aCCFs)

Surrogate model (aCCFs)

- Reproduce CCF predictions by other means?
 - \angle Linearly regress CCFs against atmospheric variables \rightarrow aCCFs:

$$aCCF_{O_3} = \theta^T \mathbf{w}, \ \theta = < T, \phi, T\phi > 0$$

Surrogate model (aCCFs)

- 👺 Reproduce CCF predictions by other means?
- \angle Linearly regress CCFs against atmospheric variables ightarrow aCCFs:

$$aCCF_{O_3} = \theta^T \mathbf{w}, \ \theta = \langle T, \phi, T \phi \rangle$$

🌞 Regional flight planning on arbitrary days

C Reasonable first estimate [3] but improvements are desirable

Towards a new surrogate model

Towards a new surrogate model

Gaussian process regression is a Bayesian nonparametric approach that can capture more information about $\mathcal{D} = \{\theta, y\}$ with error bars as data grows: $p(\hat{f}|\mathcal{D}) \propto p(\hat{f}) \ p(\mathcal{D}|\hat{f})$

Feature selection yields θ ∈ ℝ⁶: Temperature, geopotential, solar irradiance, specific humidity, zonal velocity, and release location

- Feature selection yields θ ∈ ℝ⁶: Temperature, geopotential, solar irradiance, specific humidity, zonal velocity, and release location
- ▶ Full distribution for (predicted) climate impact *Y* on test space

- Performs significantly better than Linear regression ($R^2 = 0.54$)
- Linear Regression model: Using selected features (R² = 0.13) vs original features (R² = 0.05)

- Performs significantly better than Linear regression ($R^2 = 0.54$)
- Linear Regression model: Using selected features (R² = 0.13) vs original features (R² = 0.05)

- \blacktriangleright Comparing test data and predictions $\forall \; \theta$
- ▶ Violin plot shows variance of every prediction in the test space

Summary

- ▶ $R^2 > 0.50$ for GP models, while D_{kl} is lower for chained GP model
- Analyse statistical 'outliers'
- ▶ We have a model that predicts the climate impact of aviation NO_x with (varying) confidence levels

Take away?

Improved understanding of climate effects of local aviation NO_x emissions

References

- [1] Lee et al., 2020. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018.
- [2] Grewe et al., 2014. Aircraft routing with minimal climate impact: the REACT4C climate cost function modelling approach (V1.0).
- [3] Rao et al., 2022. Case Study for Testing the Validity of NO_x-Ozone aCCFs for Optimising Flight Trajectories.
- [4] Maruhashi et al., 2022. Transport Patterns of Global Aviation NO_x and their Short-term O₃ Radiative Forcing A Machine Learning Approach.
- [5] Rasmussen & Williams, 2006. Gaussian processes for machine learning.
- [6] Saul et al., 2016. Chained Gaussian processes.

Thank you for your kind attention!

QR code for abstract