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Abstract

The availability of reliable, high-resolution climate and weather data is important to inform
long-term decisions on climate adaptation and mitigation and to guide rapid responses to
extreme events. Forecasting models are limited by computational costs and, therefore, often
generate coarse-resolution predictions. Statistical downscaling, including super-resolution
methods from deep learning, can provide an efficient method of upsampling low-resolution
data. However, despite achieving visually compelling results in some cases, such models
frequently violate conservation laws when predicting physical variables. In order to conserve
physical quantities, we develop methods that guarantee physical constraints are satisfied by
a deep learning downscaling model while also improving their performance according to
traditional metrics. We compare different constraining approaches and demonstrate their
applicability across different neural architectures as well as a variety of climate and weather
datasets. Besides enabling faster and more accurate climate predictions, we also show
that our novel methodologies can improve super-resolution for satellite data and standard
datasets.
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1. Introduction

Accurate modeling of weather and climate is critical for taking effective action to combat
climate change. In addition to shaping global understanding of climate change, local and
regional predictions guide adaptation decisions and provide impetus for action to reduce
greenhouse gas emissions (Gutowski et al., 2020). Predicted and observed quantities such as
precipitation, wind speed, and temperature impact decisions in sectors such as agriculture,
energy, and transportation. While these quantities are often required at a fine geographical
and temporal scale to ensure informed decision-making, most climate and weather models
are extremely computationally expensive to run (sometimes taking months even on super-
computers), resulting in coarse-resolution predictions. Thus, there is a need for fast methods
that can generate high-resolution data based on the low-resolution models that are commonly
available.

The terms downscaling in climate science and super-resolution (SR) in machine learning
(ML) refer to a map from low-resolution (LR) input data to high-resolution (HR) versions of
that same date; the high-resolution output is referred to as the super-resolved (SR) data.
Downscaling via established statistical methods—statistical downscaling—has been long used
by the climate science community to increase the resolution of climate data (Maraun and
Widmann, 2018). In parallel, computer vision SR has evolved rapidly using various deep
learning architectures, with such methods now including super-resolution convolutional neural
networks (CNNs) (Dong et al., 2016), generative adversarial models (GANs) (Wang et al.,
2018a), vision transformers (Yang et al., 2020), and normalizing flows (Lugmayr et al., 2020).
Increasing the temporal resolution via frame interpolation is also an active area of research for
video enhancement (Liu et al., 2017) that can be transferred to spatiotemporal climate data.
Recently, deep learning approaches have been applied to a variety of climate and weather
datasets, covering both model output data and observations. Climate super-resolution has
mostly focused on CNNs (Vandal et al., 2017), recently shifting towards GANs (Stengel
et al., 2020; Wang et al., 2021).

Generating high-resolution data with machine learning can produce realistic-looking
images and good predictive accuracy. However, a major obstacle often encountered when
applying ML to a physical system such as the Earth’s atmosphere is that the predicted
output values can violate physical laws such as conservation of energy, momentum, and
mass. Even slight violations of constraints may be problematic - leading to errors that
potentially compound as climate models are run iteratively on their own output. Moreover,
the inability to respect physical laws can lead to a lack of trust and lower adoption among
domain scientists. Besides climate science, there are numerous domains of ML for societal
benefit in which satisfaction of physical constraints is fundamentally important. Examples
include the discovery of new materials for energy and healthcare, aerodynamics simulations
for efficient vehicles, and optimal control in industrial settings. There are certain tasks that
are more suited for hard-constraining than others. One important point is that there exists
a relationship between low-resolution and high-resolution samples given by an equation.
This can be the case when modeling physical quantities, with for example mass or energy
conservation that exists between LR and HR pairs. If we are looking at compressed or blurry
images and trying to remove the effects of compression or blur, there may be no known
constraint between low and high resolution, and so constraining methodologies would not be
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applicable. On the other hand, for some data from e.g. satellites or telescopes, images are
created by summing photons across a given field of view, so the value at a given pixel can
be interpreted as the sum of values at unobserved subpixels; in such cases, hard constraints
could potentially be useful.

In this work, we introduce novel methods to strictly enforce physical constraints between
low-resolution (input) and high-resolution (output) images. We do this via a constraint
layer at the end of a neural architecture, which renormalizes the prediction either additively,
multiplicatively, or with an adaptation of the softmax layer. We use datasets based on ERA5,
WRF, and NorESM data, spanning different quantities such as water content, temperature,
water vapor, and liquid water content. For ERA5 data we also look increasing the resolution
by different factors, we create datasets with a enhancement of factors ranging from 2
over 4 and 8 to 16. We show the utility of our methods across architectures including
CNNs, GANs, CNN-RNNs, and a novel architecture that we introduce to apply super-
resolution in both spatial and temporal dimensions. Besides climate datasets we show that
our methods are able to improve predictive accuracies for lunar satellite imagery super-
resolution as well as on standard image super-resolution benchmark datasets, like Set5,
Set14, Urban100 and BSD100. Our code is available at https://github.com/RolnickLab/
constrained-downscaling and our main dataset can be found at https://drive.google.
com/file/d/1IENhP1-aTYyqOkRcnmCIvxXkvUW2Qbdx/view.

Contributions Our main contributions can be summarized as follows:

• We introduce a novel constraining methodology for deep learning-based downscal-
ing methods, which guarantees that physical constraints such as mass and energy
conservation are satisfied in the prediction.

• We show that our method improves predictive performance across different deep learning
architectures on a variety of climate datasets.

• Additionally, we show that our method increases the accuracy of super-resolution in
other domains, such as standard images and satellite imagery, and we introduce a new
deep learning architecture for downscaling along both spatial and temporal dimensions.

2. Related Work

Deep Learning for Climate Downscaling There exists extensive work on ML methods
for climate and weather observations and predictions, from CNN architectures (Vandal et al.,
2017) to GANs (Stengel et al., 2020) and normalizing flows (Groenke et al., 2020). Recently,
especially GANs have become a very popular architecture choice, including many works on
precipitation model downscaling (Wang et al., 2021; Watson et al., 2020; Chaudhuri and
Robertson, 2020) as well as other quantities such as wind and solar data (Stengel et al., 2020).
Unified frameworks comparing methods and benchmarks were introduced by Baño Medina
et al. (2020) to assess different SR-CNN setups and by Kurinchi-Vendhan et al. (2021) with
the introduction of a new dataset for wind and solar SR. To date, there has been limited
work on spatiotemporal SR with climate data. Some authors have looked at super-resolving
multiple time steps at once, but not increasing the temporal resolution (Harilal et al., 2021;
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Leinonen et al., 2021), whereas Serifi et al. (2021) increases the temporal resolution by just
treating the time steps as different channels and using a standard SR-CNN.

Constrained Learning for Climate Various works on ML for climate science have
attempted to enforce certain physical constraints via soft penalties in the loss (Beucler et al.,
2019), linearly constrained neural networks for convection (Beucler et al., 2021), or aerosol
microphysics emulation (Harder et al., 2022). A different line of work incorporates constraints
into machine learning based on flux balances (Sturm and Wexler, 2020, 2022; Yuval et al.,
2021). These strategies use domain knowledge of how properties flow to ensure conservation
of different quantities, instead of predicting tendencies directly, fluxes are predicted. Outside
climate science, recent works have emerged on enforcing hard constraints on the output of
neural networks (e.g. Donti et al. (2021)).

Constrained Learning for Downscaling In super-resolution for turbulent flows, Mesh-
freeFlowNet (Jiang et al., 2020) employs a physics-informed model which adds PDEs as
regularization terms to the loss function. In parallel to our work, the first approaches
employing hard constraints for climate-related downscaling were introduced: Geiss and
Hardin (2020) introduces an enforcement operator applied to multiple CNN architectures for
scientific datasets. A CNN with a multiplicative renormalization layer is used for atmospheric
chemistry model downscaling in (Geiss et al., 2022). Hess et al. (2022) introduces one global
constraint to be applied to post-process the precipitation prediction generated by a GAN.
We are the first to compare a variety different hard-constraining approaches and also apply
them to multiple deep learning architectures.

3. Enforcing Constraints

When modeling physical quantities such as precipitation or water mass, principled relation-
ships such as mass conservation can naturally be established between low-resolution and
high-resolution samples. Here, we introduce a new methodology to incorporate these con-
straints within a neural network architecture. We choose hard constraints enforced through
the architecture over soft constraints that use an additional loss term. Hard constraints
guarantee certain constraints even at inference time, whereas soft constraining encourages
the network to output values that are close to satisfying constraints, while minimizing a
penalty during training, but do not provide any guarantees. Additionally, for our case
hard constraining increases the predictive ability, and soft constraining can lead to unstable
training and an accuracy-constraints trade-off (Harder et al., 2022).

3.1 Setup

Consider the case of downscaling by a factor of N in each linear dimension, and let n := N2.
Let yi, i = 1, . . . , n be the values in the predicted high-resolution patch that correspond to
low-resolution pixel x. The set {yi} for i = 1, . . . , n is also referred to as a super-pixel. Then,
a conservation law takes the form of the following constraint:

1

n

n∑
i=1

yi = x. (1)
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Depending on the predicted quantity, there may additionally be an inequality constraint
associated with the data. One example is when we consider physical variables that can only
assume positive values, such as water mass. This would give us:

yi ≥ 0 ∀i = 1, . . . , n (2)

3.2 Constraint layer

We introduce three different constraint layers: additive constraining, multiplicative con-
straining, and softmax-based constraining. These are all added at the end of any neural
architecture, as shown in Figure 2, and all satisfy (1) by construction. The constraints are
applied for each pair of input pixel x and the corresponding SR N ×N patch. An illustration
is shown in Figure 1. We will use ỹi, i = 1, . . . , n to denote the intermediate outputs of the
neural network before the constraint layer and yi, i = 1, . . . , n to be the final outputs after
applying the constraints.

Additive constraining For our Additive Constraint Layer (AddCL), we take the inter-
mediate outputs and reset them using the following operation:

yj = ỹj + x− 1

n

n∑
i=1

ỹi. (3)

A similar approach is used in Geiss et al. (2022). Note that this approach in general
violates nonnegativity constraints, so is sometimes inapplicable.

We also consider a more complex additive approach, the Scaled Additive Constraint
Layer (ScAddCL), which was first introduced by Geiss and Hardin (2020):

yj = ỹj + (x− 1

n

n∑
i=1

ỹi) ·
σ + ỹi

σ + 1
n

∑n
i=1 ỹi

, (4)

with σ := sign( 1n
∑n

i=1 ỹi − x).

Multiplicative constraining For the Multiplicative Constraint Layer (MultCL) approach,
we rescale the intermediate output using the corresponding input value x:

yj = ỹj ·
x

1
n

∑n
i=1 ỹi

. (5)

Softmax constraining For predicting quantities like atmospheric water content, we want
to enforce the output to be nonnegative and, therefore, physically valid. Here, we use a
softmax multiplied by the corresponding input pixel value x:

yj = exp (ỹj) ·
x

1
n

∑n
i=1 exp (ỹi)

. (6)

This Softmax Constraint Layer (SmCL) enforces yi ≥ 0, i = 1, . . . , n.
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Figure 1: Our Softmax Constraining Layer (SmCL) is shown for one input pixel x and the
corresponding predicted 2× 2 super-pixel for the case of 2 times upsampling.

Figure 2: The CNN architecture for 2 times upsampling including the constraint layer (in
red).

4. Data

To test and evaluate our proposed method, we create a variety of datasets as well as use
existing and established ones. We generate multiple datasets based on the ERA5 reanalysis
product using average pooling to create the LR inputs, which has been the standard
methodology in climate downscaling studies (see e.g. Serifi et al. (2021); Leinonen et al.
(2021)). We also use datasets based on the outputs of models such as the Weather and
Research Forecasting (WRF) Model and the Norwegian Earth System Model (NorESM) that
contain real low-resolution simulation data matched to high-resolution data. Finally, we
test our methods on non-climate datasets: lunar satellite imagery and natural images. An
overview of all the different datasets used can be found in Table 1.

4.1 ERA5 dataset

The ERA5 dataset (Hersbach et al., 2020) is a so-called reanalysis product from the European
Center for Medium-Range Weather Forecast (ECMWF) that combines model data with
worldwide observations. The observations are used as boundary conditions for numerical
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Table 1: The different datasets we use to test our constraint layers.

Source Quantity Dimensions Size
LR/HR train/val/test

ERA5 water content (1,32,32)/(1,128,128) 40k/10k/10k
ERA5 water content (1,32,32)/(1,128,128) 40k/10k/10k
ERA5 water content (1,32,32)/(1,128,128) 40k/10k/10k
ERA5 water content (1,32,32)/(1,128,128) 40k/10k/10k
ERA5 water content (3,32,32)/(3,128,128) 40k/10k/10k
ERA5 water content (2,32,32)/(3,128,128) 40k/10k/10k
ERA5 water vapor (3,32,32)/(3,128,128) 40k/10k/10k

liquid water
temperature

WRF temperature (1,45,45)/(1,135,135) 20k/4k/4k
NorESM temperature (1,32,32)/(1,64,64) 24k/12k/12k

Lunar imagery photon count (1,32,32)/(1,128,128) 132k/16k/16k
Natural images RGB (1,128,128)/(1,512,512) 4300/100

models that then predict various atmospheric variables. ERA5 is available as global, hourly
data with a 0.25◦ × 0.25◦ resolution, which is roughly 25 km per pixel in the mid-latitudes.
It covers all years starting from 1950.

Figure 3: Samples of the three different dataset types used in this work. a) A data pair
we use for our standard spatial super-resolution task. The input is an LR image
and the target is the HR version of that. b) A data pair for performing SR for
multiple time steps simultaneously. The input is a time series of LR images and
the output is the same time series in HR. c) A data pair where SR is performed
both temporally and spatially, with two LR time steps as input and 3 HR time
steps as a target.

Total water content dataset For this work, one quantity we focus on is the total column
water (tcw) that is given in kg/m2 and describes the vertical integral of the total amount
of atmospheric water content, including water vapour, cloud water, and cloud ice but not
precipitation.
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Spatial SR data To obtain our high-resolution data points we extract a random 128×128
pixel image from each available time step (each time step is 721× 1440 and there are roughly
60,000 time steps available). We randomly sample 40,000 data points for training and 10,000
for each validation and testing. The low-resolution counterparts are created by taking the
mean over N × N patches, where N is our upsampling factor. A sample pair is shown
in Figure 3 a). This operation is physically sound, considering that conservation of water
content means that the water content (density per squared meter) described in an LR pixel
should be equal to the average of the corresponding HR pixels.

Spatio-Temporal datasets Including the temporal evolution of our data, we create two
additional datasets. For the first dataset, one sample consists of 3 successive time steps,
the same time steps for both input and target, but at different resolutions. This is done to
perform spatial SR for multiple time steps simultaneously, see Figure 3 b). We select three
random 128× 128 pixel areas per global image, resulting in the same number of examples as
the procedure described above. We split the data randomly as before, and each time step is
downsampled by taking the spatial mean. To increase both spatial and temporal dimensions,
we again crop three images out of a series of three successive time steps. To create the
low-resolution input, we take every other time step and compute the mean spatially, resulting
in two LR inputs, see Figure 3 c).

OOD dataset For the datasets described above the train-val-test split is done randomly.
To understand how our constraining influences out-of-distribution generalization, we create a
dataset with a split in time. We train on older data and then test on more recent years: for
training we use the years 1950-2000, for validation 2001-2010, and for final testing 2011-2020.

Energy dataset Also originating from the ERA5 data, we create a second dataset includ-
ing different physical variables coming with different constraints as well. This dataset is
constructed to preserve moist static energy and water masses while predicting water vapor,
liquid water content, and air temperature. The variables are taken from the pressure level at
850hPa.

4.2 WRF data

In Watson et al. (2020), a dataset using the Advanced Research version of the Weather
Research and Forecasting (WRF) Model is introduced. It comprises hourly operational
weather forecast data for Lake George in New York, USA from 2017-01-01 to 2020-03-20.
More details about the model and its configuration can be found in Watson et al. (2020).
The variable we consider for this work is the temperature at 2m above the ground. Unlike
the previous datasets, this one does not involve synthetic downsampling but includes two
forecasts run at different resolutions with different physics-based parameterizations: one
at 9 km horizontal resolution and one at 3 km. Our goal is to predict the 3 km resolution
temperature field given the 9 km one and builds on work by Auger et al. (2021), which used
the same dataset.

4.3 Lunar data

Recent work (Delgano-Centeno et al., 2021) on super-resolution for lunar satellite imagery has
shown how deep learning can be used to enhance the captured data to help future missions
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to the moon. To increase the resolution of images from regions like the south pole, where
there is no high-resolution data available, a machine learning-ready dataset has been created.
It consists of 220,000 images cropped out of the Narrow-Angle Camera (NAC) imagery from
NASA’s Lunar Reconnaissance Orbiter (LRO); for more details see Delgano-Centeno et al.
(2021). Here we use a 4x upsampling version of the dataset to verify if our constraining
methodologies can increase the performance of super-resolution outside of climate science.

4.4 Natural images

The standard benchmark datasets for super-resolution deep learning architectures applied to
natural images include the OutdoorScenceTRaining (OST), DIV2K, and Flickr2k datasets
for training and Set5, Set14, Urban100 and BSD100 for testing, as for example in Wang et al.
(2018b). Here, we use a version resized to 512× 512 pixels for HR and apply average pooling
to downsample them.

4.5 Constraints in our datasets

In predicting distinct physical quantities, there are different constraints we need to consider.
Most of our datasets include the downscaling constraints given by (1), which are satisfied
by the LR-HR pairs either approximately (for simulations that are run at LR and HR with
quantities respecting physical conservation laws) or exactly (in the case of average pooling
for creating the LR version). We detail the constraints in the following subsections.

Water mass conservation For predicting the total water mass, we are given the low-
resolution water mass Q(LR) and must obtain the super-resolved version Q(SR). The down-
scaling constraint or mass conservation constraint (1) for each LR pixel q(LR) and the
corresponding super-pixel (q(SR)

i )i=1,...,n is then given by

1

n

n∑
i=1

q
(SR)
i = q(LR). (7)

Moist static energy conservation One of our tasks includes predicting water vapor,
liquid water, and temperature while conserving both water mass and moist static energy. As
described above, water mass conservation is straightforward, directly applying our constraining
methodology. On the other hand, the moist static energy S is given by:

S = ((1−Qv) · cpd +QL · cl) · T + Lv ·Qv, (8)

where
Lv = 2.5008 · 106 + (cpw − cL) · (T − 273.16)

is the latent heat of vaporization in (Jkg−1). The water vapor Qv[kg · kg−1], the liquid
water QL[kg · kg−1], and the temperature T [K] are being predicted, whereas cpd, Cpv and
CL[J ·K−1 · kg−1] are heat capacity constants.

We use the following procedure to predict these quantities while conserving moist static
energy:

1. Given LR T,QV , QL

9
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2. Calculate LR S with (8)

3. Predict SR S,Qv, QL while enforcing (1) using one of our constraint layers

4. Calculate SR T using (8) and SR S,Qv, QL.

This means we predict T not directly, but by predicting S. We are then able to predict the
temperature T while ensuring energy conservation by applying our constraint layer to the
prediction of S.

Different simulations If the LR-HR pairs are not created by taking the local mean of the
HR but by using two simulations run at different resolutions, the downscaling constraint is
not automatically satisfied in the data. This is the case for our WRF and NorESM datasets
(NorESM data is discussed in the appendix; here, we focus on WRF). Even though the
downscaling constraint is not exactly obeyed (see Figure 4), it is approximately, and we can
still apply our constraining in the same way as before. If the real low-resolution data and
the downsampled high-resolution data are not significantly dissimilar, constraining can still
benefit the predictive ability.

Figure 4: A LR-HR pair from the WRF temperature data. Here we compare the real LR
with the low-resolution data created by average pooling of the HR, written as
DS(HR).

5. Experimental Setup

We conduct three sets of experiments:

1. Compare different constraining methods and different upsampling factors on the ERA5
water content data.

2. Show the applicability of our constraining method to other neural network architectures.

3. Show the applicability of our constraining method to different datasets and different
constraints types.

In most of our experiments, we use synthetic low-resolution data created by applying
average pooling to the original high-res samples, as usually done in this research area.
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Additionally, we consider cases with pairs of real low-res and high-res simulations to show
that our methods work in the intended final application.

5.1 Architectures

We test our constraints methods throughout a variety of standard deep learning SR archi-
tectures including an SR CNN, conditional GAN, a combination of an RNN and CNN for
spatio-temporal SR, and a new architecture combining optical flow with CNNs/RNNs to
increase the resolution of the temporal dimension. The original, unconstrained versions of
these architectures then also serves as a comparison for our constraining methodologies.

SR-CNNs Our SR CNN network, similar to Lim et al. (2017), consists of convolutional
layers using 3× 3 kernels and ReLU activations. The upsampling is performed by a transpose
convolution followed by residual blocks (convolution, ReLU, convolution, adding the input,
ReLU). The architecture for 2 times downscaling is shown in Figure 2.

SR-GAN A conditional GAN architecture (Mirza and Osindero, 2014) is a common
choice for super-resolution (Ledig et al., 2016). Our version uses the above-introduced CNN
architecture as the generator network. The discriminator is used from (Ledig et al., 2016), it
consists of convolutional layers with a stride of 2 to decrease the dimensionality in each step,
with ReLU activation. It is trained as a classifier to distinguish SR images from real HR
images using a binary cross-entropy loss. The generator takes as input both Gaussian noise
as well as the LR data and then generates an SR output. It is trained with a combination of
an MSE loss and the adversarial loss given by the discriminator, like a standard SR GAN,
e.g. Ledig et al. (2017).

SR-ConvGRU We apply an SR architecture based on the GAN presented by Leinonen
et al. (2021), which uses ConvGRU layers to address the spatio-temporal nature of super-
resolving a time series of climate data. Here we only use the generator trained without the
discriminator, providing a deterministic approach.

Figure 5: Our novel spatio-temporal architecture, combining Deep Voxel Flow and a Con-
vGRU.
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SR-FlowConvGRU To increase the temporal resolution of our data we employ the Deep
Flow Flow method (Liu et al., 2017), a deep learning architecture for video frame interpolation
combining optical flow methods with neural networks. We introduce a new architecture
combining the Deep Flow model and the ConvGRU network (FlowConvGRU): First, we
increase the temporal resolution resulting in a higher-frequency time-series of LR images
on which we then apply the ConvGRU architecture to increase the spatial resolution. The
combined neural networks are then trained end-to-end. The architecture is shown in Figure
5.

5.2 Training

Our models were trained with the Adam optimizer, a learning rate of 0.001, and a batch size
of 256. We trained for 200 epochs, which took about 3—6 hours on a single NVIDIA A100
Tensor Core GPU, depending on the architecture. All models use the MSE as their criterion,
the GAN additionally uses its discriminator loss term. All the data is normalized between 0
and 1 for training, except for the cases where the ScAddCL is applied. In the case of this
constraint layer we scale the date between -1 and 1 as proposed in Geiss and Hardin (2020),
only for our time-dependent model, ConvGRU and FlowConvGRU, we use scaling between 0
and 1, because -1 and 1 let to NaN-values during training.

5.3 Baselines

Pixel enlargement This baseline consists of scaling the LR input to the same size as the
HR by duplicating the pixels. We include this to have reference metrics that reflect how
close the LR is to the HR data. This baseline conserves mass by construction.

Bicubic upsampling As a simple non-ML baseline, we use bicubic interpolation for spatial
SR and take the mean of two frames for temporal SR.

Soft constraining Soft-constraining has been successfully applied before to a variety
of physics-informed deep-learning tasks. Here we use it to see how it compares to hard
constraints. Soft-constraining is done by adding a regularization term to the loss function.
Our MSE loss is then changed to the following:

Loss = (1− α) ·MSE+ α · Constraint violation, (9)

where the constraint violation is the mean overall constraint violations between an input
pixel x and the corresponding super-pixel yi, i = 1, . . . , n:

Constraint violation = MSE

(
1

n

n∑
i=1

yi, x

)
.

We conducted an experiment to investigate the impact of α values on final model performance;
the results are reported in the appendix. For our main paper we choose α = 0.99.

Unconstrained counterparts Furthermore, we always compare against an unconstrained
version of the above-introduced standard SR NN architectures (SR-CNN, SR-GAN, SR-
ConvGRU, SR-FlowConvGRU).
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Clipping We also run the standard CNN, but with clipping applied at inference. This is a
common practice to remove negative values. Results can be found in the appendix, see Table
6. This method does not guarantee mass conservation or significantly improves performance.

6. Results and discussion

For evaluating our results, we use typical metrics for weather and climate super-resolution:
root-mean-square error (RMSE), mean absolute error (MAE) and mean bias as well as typical
metrics for super-resolution: peak signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM), multi-scale SSIM (MS-SSIM) and Pearson correlation. We show RMSE and
MS-SSIM in the main paper, while the others can be found in the appendix. Most metrics
are highly correlated in our case. For the GAN giving a probabilistic prediction, we also use
continuous ranked probability score (CRPS). Because we are interested in the violation of
conservation laws and predicting non-physical values, we also look at the average constraint
violation, the number of (unwanted) negative pixels, and the average magnitude of negative
values.

6.1 Different constraining methods

Whereas hard-constraining shows exact conservation and appears to enhance performance,
the application of soft-constraining on the other hand does decrease constraint violation, but
still maintains a significant magnitude of it, which can be seen in Figure 6 for example. Also,
soft-constraining seems to suffer from an accuracy-constraints trade-off, where depending
on the regularization factor α, either the constraint violation is reduced, or the accuracy
increases, but it struggles to do both simultaneously. A table for different α is shown in the
appendix. Among the hard-constraining methodologies, the multiplicative renormalization
layer, MultCL, performs the weakest in terms of predictive skills (e.g. see Figures 6, 7, 8
and 9). The three other methods, ScAddCL, AddCL, and SmCL, often have very similar
measurements. SmCL shows the advantage of also enforcing positivity when necessary (see
Figure 6).

6.2 Different architectures

As shown in Figures 6, 7, 8, and 9 for all architectures (CNN, GAN, ConvGRU, FlowCon-
vGRU), adding the constraint layers enforces the constraint and improves the evaluation
metrics compared to the CNN case. Constraining the GAN leads to less of a performance
boost, but AddCL and SmCL still enhance the predictions compared to the unconstrained
GAN. Including the temporal dimensions, the constraining improves the prediction quality
much more significantly than in the case with just a single time step (see Figures 8 and 9).

6.3 Different datasets and constraints

The success of our constraining methodology does not depend on the upsampling factor:
in Figure 6, we can see that the constraining methods work well and improve all metrics
for upsampling factors of 2, 4, 8, and 16. When applied to our out-of-distribution dataset,
the improvement achieved by adding constraints is even more pronounced than for the
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Figure 6: Metrics for different constraining methods applied to an SR CNN, calculated over
10,000 test samples of the water content data. The mean and confidence interval
from 3 runs is shown relatively to the Enlarge baseline. The framed box indicates
a method that achieves zero violation of the physics, no negative pixels or mass
conservation up to numerical precision. A table with more metrics can be found
in the appendix

randomly split data (see results in Figure 10). The constraints can help architectures with
their generalization ability.

Not only mass can be conserved, but other quantities such as moist static energy. We show
that moving on to different quantities of the ERA5 dataset, temperature, water vapor, and
liquid water. Looking at Table 12 (see appendix), one can observe similar results for liquid
water QL and water vapor Qv as for the total water content: ScAddCL, AddCL, and SmCL
significantly improve results in all measures over the unconstrained CNN, while enforcing
energy and mass conservation. For temperature, on the other hand, MultCL performs the
strongest, followed by SmCL, whereas AddCL and ScAddCL achieve smaller improvements
in the scores.

Our WRF temperature dataset includes low-resolution data points drawn from a separate
simulation, rather than downsampling, and therefore it results in much harder tasks. Table 2
shows that the scores are improved slightly with our constraint layer.

Finally, we also show that applying our constraint methodology can improve results in
other domains, even in cases where there is no physics involved. We see that both for the
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Figure 7: Metrics for different constraining methods applied to an SR GAN, calculated over
10,000 test samples of the 4x upsampling water content data. The mean and
confidence interval from 3 runs are shown, for RMSE and MS-SSIM relatively to
the Enlarge baseline for number of negative pixels (per mil.) and mass conservation
violation the absolute values are shown. The framed box indicates a method that
achieves zero violation of the physics, no negative pixels or mass conservation up
to numerical precision. A table with more metrics can be found in the appendix,
see Table 8.

lunar satellite imagery and the natural images benchmark datasets, the application of our
SmCL improves the traditional metrics, as shown in Tables 3 and 4.

6.4 Perceptual quality of predictions

Additionally to an enhancement quantitatively, we can see an improved visual quality for
some examples, as shown in Figure 13 and 14 for the water content data. For the WRF
temperature forecast data, we see a very significant improvement in the perceptual quality of
the prediction. Looking at an example, such as shown in Figure 11, we can see how much
more detail is added to the prediction when adding our constraining. For the lunar satellite
imagery, Figure 12 shows that applying constraints can make the image slightly less blurry.
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Figure 8: Metrics for different constraining methods applied to an SR ConvGRU, calculated
over 10,000 test samples of the 4x upsampling water content data. The mean and
confidence interval from 3 runs are shown, for RMSE and MS-SSIM relatively to
the Enlarge baseline for number of negative pixels (per mil.) and mass conservation
violation the absolute values are shown. The framed box indicates a method that
achieves zero violation of the physics, no negative pixels or mass conservation up
to numerical precision. A table with more metrics can be found in the appendix,
see Table 9.

6.5 Development of error during training

Observing how the MSE develops during training (see Figure 15), we can see that the curve
of the constrained network is generally lower than the unconstrained one. Additionally, it
can be seen that constraining helps smooth both the training and validation curves.

6.6 Spatial distribution of errors

A known issue in downscaling methods is the so-called coastal effect, where errors of
predictions tend to be more pronounced in coastal regions. Besides coastal region areas,
mountain ridges can also be critical. In Figure 16, we show the error of the unconstrained
prediction for water content and the softmax-constrained prediction. We can see that both
predictions show more errors in coastal and mountainous regions. However, if we analyze the
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Figure 9: Metrics for different constraining methods applied to an SR FlowConvGRU,
calculated over 10,000 test samples of the 4x upsampling water content data. The
mean and confidence interval from 3 runs are shown, for RMSE and MS-SSIM
relatively to the Enlarge baseline for number of negative pixels (per mil.) and mass
conservation violation the absolute values are shown. The framed box indicates
a method that achieves zero violation of the physics, no negative pixels or mass
conservation up to numerical precision. A table with more metrics can be found
in the appendix, see Table 10

difference in errors between the unconstrained and constrained versions, we can see in Figure
17 that constraining leads to lower errors in those areas.

6.7 Limitations

In the case of our WRF dataset, we have seen that the constraining methodology can improve
predictive performance even if the underlying constraints are slightly violated by the original
data. In cases where low-resolution and its high-resolution counterpart are too far apart,
our model is not always able to increase the predictive skill. We built a dataset from two
different resolutions of the Norwegian Earth System Model (NorESM) (Seland et al., 2020),
and applying our constraining methods improved the visual similarity of the predictions, but
decreased the predictive ability. We provide scores and plots in the appendix.
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Figure 10: Metrics for different constraining methods applied to the SR CNN applied on the
OOD water content dataset, calculated over 10,000 test samples. The mean and
confidence interval from 3 runs are shown, for RMSE and MS-SSIM relatively
to the Enlarge baseline for number of negative pixels (per mil.) and mass
conservation violation the absolute values are shown. The framed box indicates a
method that achieves zero violation of the physics, no negative pixels or mass
conservation up to numerical precision. A table with more metrics can be found
in the appendix, see Table 11.

7. Conclusion and future work

This work presents a novel methodology to incorporate physics-based constraints into neural
network architectures for climate downscaling. We show that this method performs well
across different deep learning architectures, upsampling factors, predicted quantities, and
datasets. We demonstrate its skill both on standard downscaling datasets and on data
created by independent simulations. Our constrained models are not only guaranteed to
satisfy conservation laws such mass conservation, but also increase predictive performance
across metrics and use cases. Compared to soft-constraining through the loss function,
our methodology does not suffer from the common accuracy-constraints enforcement trade-
off. Our hard-constraining performance enhancement is not only limited to climate super-
resolution but also noticeable in satellite imagery of the lunar surface as well as standard
benchmark datasets for natural images. Within the climate context, our constraint layer can
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Table 2: Metrics for different constraining methods applied to the SR CNN applied on the
WRF temperature data, calculated over 10,000 test samples. The mean is taken
over 3 runs. The best scores are highlighted in bold blue.

Data Model Constraint RMSE MAE MS-SSIM Constr. viol.

T2 WRF Enlarge none 1.015 0.648 94.51 0.000
T2 WRF CNN none 0.952 0.618 94.92 0.181
T2 WRF CNN soft 1.020 0.660 94.57 0.032
T2 WRF CNN SmCL 0.950 0.592 95.25 0.000

Figure 11: A random prediction for the WRF temperature dataset. We compare uncon-
strained and softmax-constrained predictions.

help with common issues connected to deep learning applied to downscaling: it dampens
the coastal effect, errors get lower in critical regions, out-of-distribution generalization is
improved and training can be more stable.

Future work could extend the application of our constraint layer to other tasks than
downscaling. Climate model emulation (e.g. Beucler et al. (2021) and Harder et al. (2021))
for example could strongly benefit from a reliable and performance-enhancing method to
enforce physical laws.

Table 3: Metrics for different constraining methods applied to the SR-CNN, calculated over
the test samples of the lunar dataset. The mean is taken over 3 runs. The best
scores are highlighted in bold blue.

Data Model Constraint RMSE MAE SSIM PSNR

Lunar CNN none 0.00217 0.00146 90.08 37.57
Lunar CNN SmCL 0.00213 0.00144 90.40 37.74
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Figure 12: A random sample prediction from the lunar dataset is shown. We compare the
unconstrained with the constrained prediction.

Table 4: Metrics of the SR-GAN with and without SmCL calculated over the test datasets
Set5, Set14, Urban100, BSD100. The better scores are highlighted in bold blue.

Data Model Constraint RMSE MAE SSIM PSNR

Set5 SR-GAN none 8.57 4.80 92.48 29.47
Set5 SR-GAN SmCL 6.61 4.01 93.95 31.73

Set14 SR-GAN none 15.75 8.82 86.06 24.28
Set14 SR-GAN SmCL 14.07 8.12 87.37 25.16

Urban100 SR-GAN none 25.00 14.57 81.40 20.17
Urban100 SR-GAN SmCL 23.25 13.60 83.19 20.80

BSD100 SR-GAN none 14.38 8.28 85.95 24.97
BSD100 SR-GAN SmCL 13.52 7.82 87.09 25.50
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Figure 13: One example image from the test set. Shown here are the LR input, different
constrained and unconstrained predictions, and the HR image as a reference.

Appendix A.

Here we investigate the influence of the factor α on the soft-constraining method in more
detail. Table 5 shows how the increase of α improves the mass conservation but only up to a
value between 0.014 and 0.017. At the same time, it shows that the predictive skill decreases
with the increase of α significantly.

Table 5: Metrics calculated over 10,000 validation samples. The best scores are highlighted
in bold blue, second best in bold black.

Alpha RMSE MAE MS-SSIM Mass viol. #Neg

0.0001 0.241 0.102 99.95 0.021 199
0.001 0.237 0.100 99.96 0.022 19
0.01 0.247 0.103 99.96 0.022 228
0.1 0.252 0.104 99.95 0.023 68
0.9 0.268 0.110 99.95 0.020 2761
0.99 0.297 0.133 99.94 0.014 5085
0.999 0.477 0.261 99.84 0.016 98557
0.9999 0.706 0.433 99.71 0.017 634336
1 2.618 1.814 94.22 0.017 157510
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Figure 14: One example image is chosen randomly from the test set. Each model was trained
for the same target resolution but with a different upsampling factor. The first row
shows the LR inputs for each resolution and the last row the corresponding HR
ground truth. The second and third rows show the prediction of an unconstrained
CNN and with the SmCL, respectively.

Appendix B.

As natural RGB images have a well-defined rane, it is common in CNN and GAN implemen-
tations to clip the pixels at inference time to the desired range, removing negative values, for
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Figure 15: The development of training and validation errors with increasing iterations.
Shown for an unconstrained CNN and CNN+SmCL applied to the water content
data.

Figure 16: The errors of the global predictions for unconstrained and constrained (SmCL)
CNNs, when compared to the ground truth.

example. Here, in Table 6 we show that doing that gives a very small increase in performance,
but still performs significantly worse than SmCL, which achieves also zero negative values.

Appendix C.

We show the tables with the mean scores that are displayed as Figures in the main paper
and additionally include the MAE.

Appendix D.

We look at additional scores for our water content dataset. We investigate the mean bias
(mean over the difference for each pixel value of prediction and truth), the peak signal-to-
noise ratio (PSNR), the structural similarity index measure, the Pearson correlation (Corr),
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Figure 17: The difference in the errors of constrained and unconstrained predictions from
Figure 16. Positive values (red) mean a higher error in the unconstrained version.
We trim values at 3, so everything that has a difference greater than 3 is shown
as full red for better visibility.

Table 6: Metrics for different constraining methods applied to the SR CNN + clipping
applied on the water content dataset, calculated over 10,000 test samples. The
mean is taken over 3 runs. The best scores are highlighted in bold blue.

Data Model Constraint RMSE MAE MS-SSIM Mass viol. #Neg

WC CNN none 0.661 0.327 99.39 0.059 396
WC CNN clip 0.657 0.326 99.440 0.058 0
WC CNN SmCL 0.582 0.291 99.49 0.000 0

and the negative mean (the average magnitude of predicted negative values, the average
is calculated over all predicted values, including positive, that are set to zero to calculate
the negative mean). These metrics show a similar trend then the metrics shown in the
main paper: all of them are improved by adding constraints in our architecture. Without
or with soft constraining there are small biases appearing in the predictions, but hard
constraining removes those biases. PSNR is a function of the MSE and therefore shows the
same trend as it. SSIM and correlation give very similar results, with ScAddCL, AddCL,
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Table 7: Metrics for different constraining methods applied to an SR CNN, calculated over
10,000 test samples of the water content data. The mean is taken over 3 runs. The
best scores are highlighted in bold blue, second best in bold.

Fact. Model Constraint RMSE MAE MS-SSIM Mass viol. #Neg

2x Enlarge none 0.422 0.361 99.61 0.000 0
2x Bicubic none 0.322 0.137 99.90 0.066 42
2x CNN none 0.251 0.105 99.95 0.026 230
2x CNN soft 0.301 0.137 99.23 0.016 17,163
2x CNN AddCL 0.216 0.092 99.96 0.000 215
2x CNN ScAddCL 0.199 0.0876 99.96 0.000 3
2x CNN MultCL 0.223 0.094 99.96 0.000 0
2x CNN SmCL 0.215 0.094 99.96 0.000 0

4x Enlarge none 1.286 0.717 97.60 0.000 0
4x Bicubic none 0.800 0.401 99.12 0.169 87
4x CNN none 0.657 0.326 99.40 0.058 396
4x CNN soft 0.801 0.410 99.15 0.023 95,373
4x CNN AddCL 0.580 0.290 99.50 0.000 234
4x CNN ScAddCL 0.575 0.289 99.50 0.000 11
4x CNN MultCL 0.606 0.300 99.47 0.000 0
4x CNN SmCL 0.582 0.291 99.49 0.000 0

8x Enlarge none 2.181 1.294 92.39 0.000 0
8x Bicubic none 1.557 0.900 96.49 0.318 1,076
8x CNN none 1.358 0.782 97.15 0.109 2,539
8x CNN soft 1.640 0.965 96.06 0.029 103,702
8x CNN AddCL 1.267 0.733 97.41 0.000 3,196
8x CNN ScAddCL 1.264 0.734 97.41 0.000 26
8x CNN MultCL 1.331 0.733 97.22 0.000 18
8x CNN SmCL 1.268 0.734 97.40 0.000 0

16x Enlarge none 3.425 2.159 85.55 0.000 0
16x Bicubic none 2.723 1.730 91.72 0.510 8,803
16x CNN none 2.450 1.545 92.68 0.203 682
16x CNN soft 2.794 1.776 90.74 0.036 369,127
16x CNN AddCL 2.364 1.491 92.96 0.000 75,004
16x CNN ScAddCL 2.368 1.495 92.94 0.000 348
16x CNN MultCL 2.409 1.518 92.77 0.000 29
16x CNN SmCL 2.368 1.492 92.95 0.000 0

and SmCL showing the best scores. Overall we can see that soft-constraining leads to the
most significantly negative predictions, which would cause issues in the context of climate
models and predictions.
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Table 8: Metrics for different constraining methods applied to an SR GAN, calculated over
10,000 test samples of the 4x upsampling water content data. The mean is taken
over 3 runs. The best scores are highlighted in bold blue, and the second best in
bold.

Model Constraint RMSE MAE CRPS MS-SSIM Mass viol. #Neg

GAN none 0.628 0.313 0.1522 99.44 0.0453 569
GAN AddCL 0.602 0.306 0.1519 99.46 0.000 1211
GAN ScAddCL 0.604 0.305 0.1508 99.46 0.000 8
GAN MultCL 0.732 0.406 0.1978 99.13 0.000 0
GAN SmCL 0.603 0.310 0.1520 99.46 0.000 0

Table 9: Metrics for different constraining methods applied to an SR ConvGRU, calculated
over 10,000 test samples of the water content data. The best scores are highlighted
in bold blue, second best in bold.

Model Constraint RMSE MAE MS-SSIM Mass viol. #Neg

Enlarge none 1.292 0.718 97.72 0.000 0
Bicubic none 0.807 0.402 99.16 0.169 355
ConvGRU none 0.672 0.340 99.42 0.102 9094
ConvGRU AddCL 0.499 0.260 99.64 0.000 222,793
ConvGRU ScAddCL 0.499 0.260 99.64 0.000 1736
ConvGRU MultCL 0.903 0.472 98.98 0.000 42
ConvGRU SmCL 0.500 0.260 99.64 0.000 0

Appendix E.

Here we present some visualizations, a prediction by the GAN (Figure 18), the FlowConvGRU
(Figure 19, unconstrained and constrained example prediction from BSD100 and Urban100
(Figure 20), and a global prediction for water content (Figure 21).

Appendix F.

Our NorESM dataset is based on the second version of the Norwegian Earth System Model
(NorESM2), which is a coupled Earth System Model developed by the NorESM Climate
modeling Consortium (NCC), based on the Community Earth System Model, CESM2. We
build our dataset on two different runs: NorESM-MM which has a 1-degree resolution for
model components and NorESM2-LM which has a 2-degree resolution for atmosphere and
land components. We use the temperature at the surface (tas) and a time period from 2015
to 2100. The scenarios ssp126 and ssp585 are used for training ssp370 for validation and
ssp245 for testing. By cropping into 64 × 64 and 32 × 32 pixels, each scenario contains
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Table 10: Metrics for different constraining methods applied to our FlowConvGRU, calculated
over 10,000 test samples of the water content dataset. The best scores are
highlighted in bold blue, second best in bold.

Model Constraint RMSE MAE MS-SSIM Mass viol. #Neg

Interpolation none 0.834 0.428 99.10 0.169 352
FlowConvGRU none 0.673 0.352 99.40 0.072 2997
FlowConvGRU AddCL 0.509 0.275 99.63 0.000 6085
FlowConvGRU ScAddCL 0.509 0.274 99.63 0.000 2199
FlowConvGRU MultCL 0.719 0.383 99.27 0.000 0
FlowConvGRU SmCL 0.514 0.276 99.62 0.000 0

Table 11: Metrics for different constraining methods applied to the SR CNN applied on the
OOD water content dataset, calculated over 10,000 test samples. The mean is
taken over 3 runs. The best scores are highlighted in bold blue.

Data Model Constraint RMSE MAE MS-SSIM Mass viol. # Neg

ood Enlarge none 1.274 0.711 97.60 0.000 0
ood Bicubic none 0.792 0.397 98.63 0.167 91
ood CNN none 0.661 0.327 99.39 0.059 810
ood CNN AddCL 0.575 0.287 99.50 0.000 272
ood CNN ScAddCL 0.573 0.288 99.50 0.000 35
ood CNN MultCL 0.591 0.294 99.47 0.000 0
ood CNN SmCL 0.579 0.289 99.49 0.000 0

12k data points. The results for the NorESM data are shown in Table 14: the best scores
are in all cases achieved by the unconstrained CNN. This is probably due to the stronger
violation of the downscaling constraints between low-resolution and high-resolution samples.
We can see a significant difference between the real LR and the HR downsampled, as shown
in Figure 23. The visual quality of the prediction, on the other hand, seems to be improved
by constraining, an example is shown in Figure 22.
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Table 12: Metrics for different constraining methods applied to the SR CNN, calculated over
the test set for water vapor, liquid water, and temperature. The mean is taken
over 3 runs. For QL, RMSE, MAE, and Constr. violation are scaled by a factor of
103 for readability. The best scores are highlighted in bold blue, second best in
bold.

Data Model Constraint RMSE MAE MS-SSIM Constr. viol.

Qv Enlarge none 0.474 0.262 94.74 0.000
Qv Bicubic none 0.326 0.182 97.12 0.07
Qv CNN none 0.260 0.141 98.14 0.02
Qv CNN AddCL 0.250 0.133 98.28 0.00
Qv CNN ScAddCL 0.250 0.133 98.28 0.00
Qv CNN MultCL 0.250 0.133 98.28 0.00
Qv CNN SmCL 0.248 0.132 98.30 bf0.00

QL Enlarge none 0.0217 0.00862 98.34 0.00000
QL Bicubic none 0.0186 0.00765 98.96 0.00236
QL CNN none 0.0157 0.00617 99.15 0.00067
QL CNN AddCL 0.0155 0.00588 99.18 0.00000
QL CNN ScAddCL 0.0155 0.00588 99.17 0.00000
QL CNN MultCL 0.0166 0.00647 99.06 0.00000
QL CNN SmCL 0.0155 0.00585 99.17 0.00000

T Enlarge none 0.470 0.288 99.03 0.0
T Bicubic none 0.281 0.156 99.67 159.1
T CNN none 0.459 0.287 99.03 139.7
T CNN AddCL 0.276 0.160 99.67 0.0
T CNN ScAddCL 0.280 0.163 99.67 0.0
T CNN MultCL 0.270 0.155 99.69 0.0
T CNN SmCL 0.272 0.155 99.68 0.0
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Table 13: More metrics for different constraining methods applied to an SR CNN, calculated
over 10,000 test samples. The best scores are highlighted in bold blue, second best
in bold.

Fact. Model Constraint Mean bias PSNR SSIM Corr Neg mean

2x Enlarge none 0.000 45.36 98.65 99.75 0.000
2x Bicubic none 0.000 51.46 99.71 99.95 0.000
2x CNN none −0.003 53.62 99.82 99.97 0.002
2x CNN soft −0.002 52.07 99.74 99.94 0.192
2x CNN AddCL 0.000 54.91 99.85 99.98 0.002
2x CNN ScAddCL 0.000 55.66 99.87 99.98 0.000
2x CNN MultCL 0.000 54.65 99.84 99.97 0.000
2x CNN SmCL 0.000 54.95 99.85 99.98 0.000

4x Enlarge none 0.000 39.43 94.91 98.98 0.000
4x Bicubic none 0.000 43.55 98.29 99.63 0.000
4x CNN none −0.015 45.26 98.70 99.74 0.001
4x CNN soft −0.001 43.55 98.15 99.59 0.546
4x CNN AddCL 0.000 46.35 98.89 99.80 0.001
4x CNN ScAddCL 0.000 46.42 98.90 99.79 0.000
4x CNN MultCL 0.000 45.98 98.83 99.78 0.000
4x CNN SmCL 0.000 46.31 98.88 99.79 0.000

8x Enlarge none 0.000 34.84 89.08 96.95 0.000
8x Bicubic none +0.0001 37.77 95.40 98.50 0.006
8x CNN none −0.0148 38.96 95.93 98.82 0.012
8x CNN soft −0.0071 37.32 94.37 98.22 0.656
8x CNN AddCL 0.000 39.56 96.23 98.96 0.011
8x CNN ScAddCL 0.000 39.58 96.24 98.97 0.000
8x CNN MultCL 0.000 39.13 95.99 98.87 0.000
8x CNN SmCL 0.000 39.55 96.21 98.96 0.000

16x Enlarge none 0.000 30.92 85.20 92.19 0.000
16x Bicubic none +0.0090 32.91 91.99 95.15 0.063
16x CNN none −0.0091 33.83 92.48 95.94 0.006
16x CNN soft +0.0115 32.70 90.45 94.63 4.233
16x CNN AddCL 0.000 34.14 92.67 96.20 0.581
16x CNN ScAddCL 0.000 34.13 92.67 96.18 0.007
16x CNN MultCL 0.000 33.98 92.54 96.07 0.000
16x CNN SmCL 0.000 34.13 92.68 96.19 0.000
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Figure 18: A random sample for the GAN predictions, showing 3 different outputs from the
ensemble, constrained and unconstrained.

Table 14: Metrics for different constraining methods applied to the SR CNN, calculated over
the test samples of the NorESM dataset. The mean is taken over 3 runs. Best
scores are highlighted in bold.

Data Model Constraint RMSE MAE MS-SSIM Constr. viol.

Tas NorESM Enlarge none 2.987 1.915 95.96 0.000
Tas NorESM Bicubic none 2.910 1.864 96.36 0.073
Tas NorESM CNN none 2.348 1.559 96.93 1.034
Tas NorESM CNN soft 2.928 1.874 96.28 0.041
Tas NorESMF CNN AddCL 2.885 1.847 96.45 0.000
Tas NorESM CNN ScAddCL 2.884 1.846 96.46 0.000
Tas NorESM CNN MultCL 2.888 1.859 96.43 0.000
Tas NorESM CNN SmCL 2.885 1.847 96.45 0.000
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Figure 19: One random test sample and its prediction. Shown here are the two LR input
time steps, predictions by both a constrained and unconstrained version of the
FlowConvGRU, and the HR sequence as a reference.
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Figure 20: Two random images from both the BSD100 and the Urban100 datasets. The
first row shows the unconstrained prediction, the second row the constrained
prediction using softmax constraining.

Figure 21: Global data: LR, unconstrained prediction, constrained prediction, and HR.
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Figure 22: A sample prediction for the NorESM temperature, unconstrained and constrained.

Figure 23: A sample from the NorESM temperature dataset. We compare the low-resolution
simulation to the downsampled high-resolution counterpart.
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