EGU General Assembly 2023 HS3.1 - Hydroinformatics: data analytics, machine learning, hybrid modelling, optimisation Room 3.29/30 on Monday, 24 April 2023, 09:05-09:15

Fluvial land cover classification by using CSC deep learning method with UAV airborne images

<Acknowledgments> * Patrice Carbonneau (Durham Univ., UK) * Akito Momose (SIT, Japan) * JSPS KAKENHI (20H02261)

Introduction

Research background: riparian vegetation management

- Vegetation overgrowth in fluvial floodplains and sand bars has become a serious problem for river management worldwide.
 - Decreasing Flood Flow Capacity
 - Changing Groundwater Levels,
 - Hyporheic Processes,
 - Sediment and Nutrient Cycles,
 - Riparian Ecosystems and
 - **Original Riverine Landscapes**

 Long-term monitoring of fluvial geomorphological changes, including sediment and vegetation dynamics

Miyamoto & Kimura, *WRR*, 2016, DOI: (10.1002/2015WR018528)

Research purposes: developing a deep learning method

- To investigate <u>a deep learning method</u> for fluvial land cover classification using aerial imagery of <u>UAV</u> (Unmanned Aerial Vehicles)
 - Modifying/applying the deep learning method, <u>CSC^{*}</u> (CNN-Supervised Classification)
 - Examining <u>its applicability</u> for the fluvial land cover classification in the Kinu River, Japan

Carbonneau et al., Remote Sensing of Environment, 2020, https://doi.org/10.1016/j.rse.2020.112107

UAV Measurements

Target river basin: the Kinu River

- ✓ River basin area: 1,760km²
- ✓ Main river channel length: 177km
- ✓ UAV measurements in 2015-2019
- ✓ 51 river sections of RGB orthorectified images were taken aerially
- The spatial resolution of images: 4 cm per pixel

PHANTOM3 ADVANCED (DJI)

eBee (senseFly)

UAV orthorectified RGB images: the Kinu River, 2016

Deep learning: CSC (CNN Supervised Classification)

Land cover classes in CSC

✓ 7 land cover classes

✓ Image tiles extracted from the UAV images in 200 * 200 pixels (7m)

	Water surface	Gravel	Sand	Farm- land	Grass	Tree	Artificial land	Total
#	3,095	2,608	1,369	3,067	2,981	3,055	1,935	21,450

✓ The image tiles in a total of 85,800 through data augmentation for finetuning in the CSC first stage

CNN fine-tuning in the CSC first stage

VGG16 MaxPooling Existing MaxPooling weights MaxPooling MaxPooling Updating weights Dense Dense Dense

Mini-CNN development in the CSC second stage

 Investigated the structure of mini-CNN and its hyper-parameters that can classify image class with high accuracy

Water surface Gravel Sand Grass Tree Farmland Artificial land

True labels

Unclassified

Image mosaic

Results and Discussion

CNN fine-tuning in the CSC first stage

✓ Best hyper-parameters:
 Patch size: 200x200pixel, Freeze layer: 7 Learning late: 10⁻⁶

✓ Classification report

	Precision	Recall	F1-score	Support	Training loss
Water surface	0.994	0.988	0.991	2497	0.8
Gravel	0.982	0.958	0.969	2106	4 -:
Sand	0.924	0.927	0.926	2178	_ට 0.6 1
Grass	0.910	0.917	0.914	2380	
Tree	0.946	0.926	0.936	2443	₹ 0.4
Farmland	0.938	0.976	0.957	2486	2
Artificial land	0.962	0.960	0.961	3070	0.2
					1 Training accuracy
Accuracy			0.951	17160	
Macro avg.	0.951	0.950	0.950	17160	0 10 20 0 10 20
Weight. Avg.	0.951	0.951	0.951	17160	Learning curves

Mini-CNN development in the CSC second stage

✓ Best hyper-parameters:

- Patch size: 21pixel
- ➤ Learning late :10⁻³
- CNN samples :4.0x10⁵
- Filter size: 100pixel

Unclassified
Water surface
Gravel
Sand
Grass
Tree
Farmland
Artificial land

CNN result F1 = 87.0

True labels

CSC result F1 = <u>90.4</u>%

Land cover classification in the Kinu River (1)

The Kinu River at 92k in 2018

Land cover classification in the Kinu River (2)

Concluding remarks

- Investigating <u>a deep learning method</u>, <u>CSC</u>, for fluvial land cover classification using aerial imagery of <u>UAV</u>
 - The weighted average F-measure for the optimised CSC model was <u>90.4%</u>. This confirmed that the optimised CSC could reproduce the land cover classes with enough accuracy.
 - The CSC application to the RGB orthorectified images of the Kinu River in Japan showed that <u>the CSC deep learning method could accurately</u> <u>classify temporal changes in fluvial geomorphologies</u>, including the significant differences before and after the severe floods.
 - Future work would be needed to <u>improve some land cover</u> classifications with lower accuracy and to verify further <u>the applicability</u> of the method <u>to other</u> <u>rivers with different fluvial characteristics</u>.

Thank you for your kind attention!