Development of oxy-symplectites in the oceanic lower crust at Atlantis Bank Oceanic Core Complex, Southwest Indian Ridge- manifestation of fluctuating oxidation state

Oxy-symplectite development

Development of orthopyroxene-magnetite symplectite associated with olivine and magnetite/Fe-Ti oxide Amphibole rim developed at olivine/symplectite-plagioclase interface

Typical symplectite development adjacent to composite magnetite-ilmenite Development of orthopyroxene-magnetite symplectite at olivine grain boundary.

Orthopyroxene-magnetite symplectite, vermicular magnetite lamellae demarcate the orthopyroxene-amphibole phase boundary.

Symplectitic intergrowth mimics the olivine grain boundary. Note the domainal development within symplectite.

Archisman Dhar^{1*}, Biswajit Ghosh¹, Debaditya Bandyopadhyay¹, Tomoaki Morishita², Akihiro Tamura², Manojit Koley¹, Sankhadeep Roy¹ ¹Department of Geology, University of Calcutta, India, ²Faculty of Geosciences and Civil Engineering, Kanazawa University, 920-1192, Kanazawa, Japan (*correspondence : archi2109@gmail.com)

Orthopyroxene-magnetite symplectite associated with composite oxide grains. Note the exsolved lamellae of ilmenite within magnetite.

Typical occurrence of symplectite at olivine grain boundary. Amphibole rim developed along olivine/symplectite-plagioclase boundary. Note the absence of amphibole rim at olivine/symplectite-clinopyroxene interface.

