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Introduction Methodology Results
* Flood is one of the widespread natural disasters posing a T T oozt
threat to the life and property of millions of people worldwide . I"_‘“ bt || L 3 P f\
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* In operational flood forecasting, rainfall-runoff simulation is a e ‘ . » A \/\ /\\ /\/V\/\ r A /\ X gjj:j: \ _ ,,J
complex non-linear hydrological process that is influenced by ormativationy | | M L | VI®E /\/ \/ W W el AL Vi

various factors, such as the catchment’s geography, climate
and underlying surface, and human activities (Feng et al.
2021).

* Few improvements to the classic LSTM modelling framework
have been incorporated to date (Kao et al. 2020).
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Fig. Mahananadi River basin

* Geographical area = 141,589 km?

* Average annual rainfall = 1500 mm

* Tropical monsoon (June-September) region

» Suffered several devastating floods (in 2001, 2003, 2006,
2008, 2011 and 2014)

* Input data to Smooth-LSTM: Time-lagged discharges at
Mundali gauging site (immediately upstream of Naraj)
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* The LSTM network is able to learn better at smaller
network and batch sizes.

* The Smooth-LSTM showed consistency
prediction up to 5-days lead-time.

* The Smooth-LSTM has less sensitivity to
information and noise in the input dataset.

* The Smooth-LSTM is robust in daily streamflow forecasting

characterized with the narrowest uncertainty bands.

in discharge

redundant

References

Feng, R., et al., 2021. Enhanced long short-term memory model for runoff prediction. Journal of
Hydrologic Engineering, 26 (2), 04020063.

Kao, I.F., et al., 2020. Exploring a long short-term memory based encoder-decoder framework for
multi-step-ahead flood forecasting. Journal of Hydrology, 583, 124631.

Lechowska, E., 2018. What determines flood risk perception? A review of factors of flood risk
perception and relations between its basic elements. Natural Hazards, 94 (3), 1341-1366.

How to cite: Khatun, A., Chatterjee, C., and Sahoo, B.:
Daily Streamflow Forecasting in the Mahanadi River Basin
using a Novel Deep Learning-based Model, EGU General

Date (dd-mm-yyyy)

Assembly 2023, Vienna, Austria, 24—-28 Apr 2023, EGU23-

4812,
2023.

https://doi.org/10.5194/egusphere-egu23-4812, uncertai nty assessment

bt VAL P
o 4072012 22.00-2012 28082013 (O3-08-2014
3
8] \
Lead-time (days)  NSE (-) | 4
1 0.87 -3 |
2 0.86 24 ; AU
3 0.87 L 'JK’\ \ WY W
4 0.87 5r-2012 | 2348+ mv‘ 28002013 04-06-2014 |
| 5 0.82 = g
T
. 1 3
Comparison of observed vs forecasted streamflows at % g’ ks : A
) i £ 8] M. An M\ A
1-5 days lead-time 10 g _LOWR W, U
-~ ~ BO7-2012 M092012 00682013 065082014
7’ \\ 0.9 2
’ 8
/"Thus, Smooth-* o ) ' o \
i/ [ y
LSTM shows % =o gl i
. g / 21 a3 i 3R 5 |
1 Zo ) o A 4 F A a|
satlsfactory' | esd " LM '-_,.-"-'\“\,x LAWY
\ performance in 1 os{d 7OT2012 | 25092012 | 31482013 06-08-2014
el fl 1 (b) Smooth-LSTM %
\ ally stream O\NI/ I S S N N & | {8 day)
'\ _forecasting Step size (Days) . i
N . g e -
S _id Fig. Sensitivity of the Smooth- g1 t 7 3
== Al . "~ ¥ 3R
LSTM model with input time-lags J"\ Ya F UM
lsJ? 2012 25-08-2012 01 09-2013  07-08-2014

Fig. Quantile Regression-based




