1	Mongolian oak encroachment aggravates nitrogen limitation to Dahurian larch in
2	southern Asian boreal forest
3	Yang Tang ^{1, 2} , Enzai Du ^{1, 2*} , Yingna Liu, Xiaofei Gao
4	¹ State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of
5	Geographical Science, Beijing Normal University, Beijing 100875, China
6	² School of Natural Resources, Faculty of Geographical Science, Beijing Normal
7	University, Beijing 100875, China
8	*Corresponding author. E. Du (<u>enzaidu@bnu.edu.cn</u>)
9	

10 **Results**

11 **1** Interspecific difference in foliar nitrogen concentration, $\delta^{15}N$ and $\Delta^{15}N$

Foliar N concentration of Dahurian larch (17.0 \pm 2.0 mg g⁻¹) was lower than that of 12 Mongolian oak $(25.8 \pm 4.0 \text{ mg g}^{-1})$ (paired t test, t = -11.12, P < 0.001; Fig. 2a). Foliar 13 δ^{15} N showed significantly lower values in Mongolian oak (-1.3 ‰ ± 0.9 ‰) than in 14 Dahurian larch (1.2 $\% \pm 2.9 \%$) (t = 4.70, P < 0.001; Fig. 2b). Similarly, Δ^{15} N of 15 Mongolian oak ($-4.8 \ \% \pm 1.1 \ \%$) was significantly lower than that of Dahurian larch 16 $(2.3 \% \pm 3.0 \%)$ (t = 4.46, P < 0.001; Fig. 2c). Besides, there existed weak correlation 17 between Mongolian oak and Dahurian larch in foliar N (P = 0.127; Fig. 2b), δ^{15} N (P = 18 0.689; Fig. 2d) and $\Delta^{15}N$ (P = 0.598; Fig. 2f). 19 20 2 Effect of Mongolian oak encroachment on nitrogen nutrition of Dahurian larch Variation of foliar N were mainly explained by basal area percent (BAP), MAT, MAP 21

and stand aspect (total variance explained 64.2%; Fig. 2a). Conditional regression model showed that foliar N of Dahurian larch was positively correlated with basal area proportion of Mongolian oak (variance explained 16.3%, P < 0.01; Fig. 2b), but decreased with MAP (variance explained 18.3%, P < 0.01; Fig. 2a), MAT (variance explained 14.6%, P < 0.01; Fig. 2d) and stand aspect (variance explained 15.0%, P <0.01; Fig. 2e).

Foliar δ^{15} N and Δ^{15} N of Dahurian larch both increased significantly with basal area proportion of Mongolian oak (variance explained 33.4% for δ^{15} N, P < 0.01; variance explained 42.3% for Δ^{15} N, P < 0.01; Fig. 5), while the roles of other potential factors were not statistically important (P > 0.05; Fig. 4a & 4f). Specifically, foliar δ^{15} N decreased with herb coverage, stand aspect, and slope (total variance explained 36.7%, P < 0.01; Fig.4c–4e). The variation of foliar Δ^{15} N of Mongolian oak decreased with stand aspect (variance explained 11.7%, P < 0.01)

Bivariate linear regression model indicated that the basal area increment (BAI) of Darhurian larch increased significantly with soil δ^{15} N (R² = 0.15, P < 0.05; Fig. 5).

37 **3 Effects of Mongolian oak encroachment on soil nitrogen availability**

Soil δ^{15} N ranged from 1.62‰ to 5.65‰ across the forest ecotone. The spatial variation of soil ¹⁵N values was mainly explained by stand slope and aspect (total variance explained 41.9%) (Fig. 5b). Specifically, conditional regression model showed that soil δ^{15} N decreased significantly with stand slope (P < 0.01, Fig 5c). Furthermore, soil δ^{15} N varied significantly with stand aspect (P < 0.01, Fig. 4b). However, basal area

- 43 proportion of Mongolian oak was not a statistically important predictor of soil δ^{15} N (*P*
- 44 = 0.19; Fig. 4d).
- 45

46 Figure 1. Study area across the temperate-boreal forest ecotone. Panel (a)

- 47 vegetation distribution and sampling transect in the study area; Panel (b) the sampling
- 48 plots across the ecotone. Size of blue circle in panel (b) indicates the relative
- 49 dominance (e.g., basal area percent, ranging from 0 to 0.5, see Method) of Mongolian
- 50 oak in each sampling plot.
- 51

52 53 56 test was used to test the interspecific difference.

57 58

- Figure 3. Relative importance of predictors for foliar N concentration of Dahurian
 larch (a) and changes in foliar N concentration with basal area proportion (BAP)
 of Mongolian oak (c). The shaded areas represent the 95% confidence intervals of the
 linear model fit.
- 63

Figure 4. Relative importance of predictors for foliar $\delta^{15}N$ and $\Delta^{15}N$ of Duhurian larch (a, f) and changes in foliar $\delta^{15}N$ and $\Delta^{15}N$ with basal area proportion (BAP) of Mongolian oak (b, g). The shaded areas represent the 95% confidence intervals of the linear model fit.

71

- Figure 5. Relative importance of predictors of surface soil $\delta^{15}N$ (a) and conditional
- 76 regression plots for the important drivers. Slope (b), Soil C: N (c).
- 77

78 79