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Classical process-based approach Classical deep-learning approach
Scenario analysis Limited extrapolation
Sub-process states and fluxes No intermediate processes

Train surrogate outside historical context and for
all water-balance components

Computational limitations | Very fast |
GPU computation
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Network
* Primarily a LSTM neural network

Relu activated
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Deep-learning surrogate design

Training and testing
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Deep-learning surrogate design
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Deep-learning surrogate design

Multiple resolutions
* Requirement for resolution scalability



Deep-learning surrogate design

Multiple resolutions
* Requirement for resolution scalability

* Train models at three different spatial resolutions

* 30 arc-minute resolution

* 05 arc-minute resolution
e Multi-resolution (half of 30 arc-minute and half of 05 arc-minute)
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Performance

* Generally good spatiotemporal performance over
all output variables



30 arc-minute model

30 arc-minute data
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Performance

* Generally good spatiotemporal performance over
all output variables

* Single-resolution models scale poorly to other
resolutions



05 arc-minute model

30 arc-minute data
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Performance

* Generally good spatiotemporal performance over
all output variables

* Single-resolution models scale poorly to other
resolutions

 Multi-resolution models scale well to other
resolutions

* Multi-resolution models often even outperform single-
resolution models on their target resolutions



Predicted mean baseflow (m)

Target mean baseflow (m)
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Conclusion

We successfully developed a deep-learning surrogate of a
global process-based hydrological model

* Includes all water-balance components

* Scalable over different resolutions

This process-based model surrogate helps us to support
global assessments

* Makes high-resolution modeling more accessible

* Allows for climate-change and adaptation scenario analysis
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