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Why a deep-learning model surrogate?

Classical process-based approach

Scenario analysis

Sub-process states and fluxes

Computational limitations

Classical deep-learning approach

Limited extrapolation

No intermediate processes

Very fast

Train surrogate outside historical context and for 
all water-balance components

GPU computation



Deep-learning 
surrogate design



Deep-learning surrogate design

Network

• Primarily a LSTM neural network



Deep-learning surrogate design

Network

• Primarily a LSTM neural network

Model inputs Model outputs

Li
n

e
ar

 la
ye

rs

Li
n

e
ar

 la
ye

rs

ReLu activated
LSTM layers



Deep-learning surrogate design

Training and testing

• Subsample of all global cells for 
training and testing



Deep-learning surrogate design

Training and testing

• Subsample of all global cells for 
training and testing

• Two thirds of both samples and dates 
for training, rest for testing

Training Testing
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Deep-learning surrogate design

Multiple resolutions

• Requirement for resolution scalability

• Train models at three different spatial resolutions
• 30 arc-minute resolution

• 05 arc-minute resolution

• Multi-resolution (half of 30 arc-minute and half of 05 arc-minute)
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Performance

• Generally good spatiotemporal performance over 
all output variables
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Performance

• Generally good spatiotemporal performance over 
all output variables

• Single-resolution models scale poorly to other 
resolutions
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Performance

• Generally good spatiotemporal performance over 
all output variables

• Single-resolution models scale poorly to other 
resolutions

• Multi-resolution models scale well to other 
resolutions
• Multi-resolution models often even outperform single-

resolution models on their target resolutions
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Conclusion

We successfully developed a deep-learning surrogate of a 
global process-based hydrological model

• Includes all water-balance components

• Scalable over different resolutions

This process-based model surrogate helps us to support 
global assessments

• Makes high-resolution modeling more accessible

• Allows for climate-change and adaptation scenario analysis



Conclusion

We successfully developed a deep-learning surrogate of a 
global process-based hydrological model

• Includes all water-balance components

• Scalable over different resolutions

This process-based model surrogate helps us to support 
global assessments

• Makes high-resolution modeling more accessible

• Allows for climate-change and adaptation scenario analysis



Introducing
DL-GLOBWB
a deep-learning surrogate of a 

process-based global 
hydrological model

Bram Droppers, Myrthe Leijnse,  
Marc F.P. Bierkens and Niko Wanders

@DroppersBramb.droppers@uu.nl


