Coupled poro-elasto-plastic models of transient fluid flow in response to a crustal strike-

slip fault: insight from a geothermal setting in the South Andean Volcanic Zone

1. Aim & Motivation

Geothermal systems can host energy resources, where hydrothermally enhanced chemical reactions can
favour mineralizations of economic interest. While faults can alter fluid flow in their surroundings,
potentially acting as barriers or conduits for fluids, magmatic and hydrothermal fluids can also modify
pore pressure and alter faults resistance to slip motion. The Planchén-Peteroa geothermal system,
located in the South Andean Volcanic Zone (Chile), illustrates how crustal scale strike-slip faults are
associated with localized hydrothermal fluid flow. In this work, we address the first-order, time-
dependent control a strike-slip crustal fault exerts on a nearby geothermal system, using the Planchén-

Peteroa geothermal system as a case study.

The Suction Pump Mechanism
(Sibson 1985, 1987, 2000)

Refers to fluid
migration towards a
slipping strike-slip
fault system because
of the emergence of
dilational jogs, from
pre-existing stepovers
on the trace of the
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4. Results: Solid deformation and fluid flow evolution

Our model

How?

We developed an original poro-elasto-plastic Finite Element Method (FEM) model based on the

Dilational jog

fault. These jogs

experience a sudden
dilation, causing a
fluid pressure drop

FEniCS library, in which the poro-elastic and the elasto-plastic constitutive

equations are implicitly coupled. Once this implementation is benchmarked, we assess the
development of fluid flow due to a left-lateral fault slip set at 5 km depth considering the influence of
the fault's slip-rate, shear modulus and permeability, the plastic yield strength, and the fluid's viscosity.

inducing suction on
the surrounding fluid.

Modified from Sibson (1985 & 2000)
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2. The Planchon-Peteroa geothermal system
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Even though further local studies are yet to be conducted, the
Planchon-Peteroa inferred geothermal system displays the
fundamental traits of an Andean high-enthalpy geothermal
system:

® WNW-striking seismogenic faults

Highly conductive rock volumes in between and close
to these faults

® Hotsprings

Magnetotelluric and seismic surveys in the region have constrained
the geometry and location of these regional fault systems and the
inferred fluid reservoirs and have determined that fluids are closely
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We use a Berea Sandstone for our reference model
G v K Ks K f o [0) K M
[GPa]  [-] [GPa]  [GPa]  [GPa]  [-] [-] [m?] [GPa]
6 0.2 8 36 2.25 0.778 0.19 1.90-10713 9.92

Fluid migrates from the reservoir towards
the surface due to free-flow boundary condition

3) 10 days after fault slip

Volumetric Strain [-]

Fault slips!

d Behavior
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3) 1 hour after fault slip
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Mean Stress [MPa]

Dilational and contractional domains emerge,
thus creating negative and positive fluid pressure domains

Stationary State

(0s)

related to rock deformation (Pearce et al., 2020).

We focus on the influence of the seismically active WNW-striking,
left lateral Andean Transverse Fault (ATF) (seismic cluster Clsl)
on the geothermal reservoir located NE of the Planchén volcano
at 4-8 km depth, inferred from the C1 resistive anomaly.

Equations

® Mass balance

0€y (U) 1 dp ,
O[T+ ME‘I'le(q(p))—O
K
q(P)=——Vp
7

® |inear momentum balance

div(o (u,p)) =0

ou,p) = (K — %) trace (e (u)) I + 2Ge (u) — ap

® Elastoplasticity

e=¢e+ ¢l

Ao = D : Ae€ + DPS - AgP

f(@,87)=1/3]2(s(0)) — (0y0 + HEP) <0

We solve for the fluid pressure p
and the solid displacement u

o Import mesh from Gmsh . . .
- Set finite elements used Pefine mechanical and The poro-elasto-plastic formulation is
> [Biafing rest sl Griel ydraulic parameters . . L.
e numerically solved using a Finite-Element
scheme implemented in the Python
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: governing equations .
| foriinrange(0, t) [ equations (Alnaes et al., 2015). We use
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Results available at our GitHub!
https://github.com /FNSL1996/PEP _FEniCS
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Hours after Fault Slip
(103 - 10 s)

Stress Shape Ratio ¢ [-]

Fluid migrates towards the negative
fluid pressure domains, particularly, into
the easternmost domain
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Fluid flow evolution

Fluid Pressure [MPa]

Fluid pressure dissipates, reducing fluid
migration towards the fault.
Fluid flow starts to return to its stationary state

Hours after Fault Slip
(103 - 10% s)

Area used for flux calculation

Model Name Rheology and Slip-rate Gy Kf ay0 o NFMAX
Heterogeneity [m/s] [GPa] [m?] [MPa] [Pa - s] [-]
Elastic_SR_1 P-Elastic, Homogeneous 0.1 6 1.90-10~13 = 1073 ~10
SR_01 P-EPlas, Homogeneous 0.1 6 19010713 5 10~3 ~10
SR_1 P-EPlas, Homogeneous 1 6 1.90-10°1 5 10~3 ~12
SR_10 P-EPlas, Homogeneous 10 6 1.90-10°13 5 1073 ~12
Yield_SR_1 P-EPlas, Homogeneous 1 6 1.90-10°13 2 10~3 ~11
Shear_SR_1 P-EPlas, Compliant Fault 1 3 1.90-10713 5 1073 ~8
Permeability_SR_1  P-EPlas, Permeable Fault 1 6 48610710 5 1073 ~15
Viscosity_SR_1 P-EPlas, Homogeneous 1 6 1.90-10°13 5 102 ~75

6. Conclusion

We postulate that the first-order control over fluid flow for fault and

geothermal system as the ones present in the South Andean Volcanic Zone

Is that of a suction pump-like mechanism. Our results show a time-

dependent focussed fluid flow, which can alter the stationary fluid flow

from weeks to months.

® The spatial and temporal evolution of this fluid flow is shown to depend on
fault permeability (greater oscillation range), shear modulus (lower flow),

fluid viscosity and on the rock's yield strength (greater flow).

® \We report a maximum fluid flux reaching 8 to 70 times the initial stationary

flux.

® \We also show how the simple von Mises plasticity criterion already enhances

fluid flow, locally.

Read our work!

Our GitHub
Repository

Our paper
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Fluid flow returns to stationary
state weeks/months after fault slip

a) Suction pump mechanism at a dilational jog (Sibson, 2000), with coseismic reduction in fluid
pressure (Pf) below hydrostatic pressure (Ph), and progressive increase back to Ph in the

interseismic period.

b) Normalised fluid pressure at the eastern negative pressure domain in our models. A rapid
decrease in fluid pressure is seen during fault slip, followed by a progressive return to stationary

level 30 days afterfault slip, remarkably similar to (a).

Stages of fluid flux evolution
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