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• Satellite-based soil moisture (CCI) was
used to calibrate the SWAT+model.

• Single- and multi-objective strategies were
employed in runoff of crop yield simula-
tions.

• Model-based soil moisture was calibrated
for two layers via employing the SWI index.

• CCI could improve the reliability of the
SWAT+ model in transboundary river ba-
sins.
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Satellite-based observations of soil moisture, leaf area index, precipitation, and evapotranspiration facilitate agro-
hydrological modeling thanks to the spatially distributed information. In this study, the Climate Change Initiative
Soil Moisture dataset (CCI SM, a product of the European Space Agency (ESA)) adjusted based on Soil Water Index
(SWI) was used as an additional (in relation to discharge) observed dataset in agro-hydrological modeling over a
large-scale transboundary river basin (Odra River Basin) in the Baltic Sea region. This basin is located in Central
Europe within Poland, Czech Republic, and Germany and drains into the Baltic Sea. The Soil and Water Assessment
Tool+ (SWAT+)model was selected for agro-hydrological modeling, and measured data from 26 river discharge sta-
tions and soil moisture from CCI SM (for topsoil and entire soil profile) over 1476 sub-basins were used in model cal-
ibration for the period 1997–2019. Kling–Gupta efficiency (KGE) and SPAtial EFficiency (SPAEF) indices were chosen
as objective functions for runoff and soil moisture calibration, respectively. Two calibration strategies were compared:
one involving only river discharge data (single-objective - SO), and the second one involving river discharge and
satellite-based soil moisture (multi-objective – MO). In the SO approach, the average KGE for discharge was above
0.60, whereas in the MO approach, it increased to 0.67. The SPAEF values showed that SWAT+ has acceptable accu-
racy in soil moisture simulations. Moreover, crop yield assessments showed thatMO calibration also increases the crop
yield simulation accuracy. The results show that in this transboundary river basin, adding satellite-based soil moisture
into the calibration process could improve the accuracy and consistency of agro-hydrological modeling.
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1. Introduction

Several complex processes, such as interactions between groundwater
and surface water, river flows, crop-related processes, nutrient transport,
and anthropogenic effects occur simultaneously in river basins
(Fernandez-Palomino et al., 2021; Koohi et al., 2022; Ma et al., 2019).
Though understanding these processes on small scales, such as laboratory
or controlled farms, seems straightforward, but in the real world, with nu-
merous unpredictable effects on these processes, analyzing and finding pre-
cise relations between them is almost unattainable (Fernandez-Palomino
et al., 2021; Guse et al., 2016; McDonnell et al., 2007; Sivapalan et al.,
2012; Triana et al., 2019). Due to the high variability in the real world, sim-
ilar farms in the same region by employing the same farm management
plan could have different crop yields, or similarwater-saving plans in differ-
ent regions could have totally different outputs (Feng et al., 2006; Fohrer
et al., 2001; Gupta et al., 2006; Montanari and Koutsoyiannis, 2012).

In this regard, several types of hydrological models as managerial tools
are developed to simulate and project the consequence of different possible
scenarios (Devia et al., 2015; Sood and Smakhtin, 2015). In the realm of hy-
drology, distributed hydrological models are widely used to comprehen-
sively simulate the effects of human-caused activities such as land use
changes, and natural-caused effects such as heatwaves and extreme precip-
itation events on water quantity, quality and crops (Alfieri et al., 2022;
Delavar et al., 2022; Eini et al., 2020; Eini et al., 2022a; Ilampooranan
et al., 2021; Ma et al., 2019). In several studies, distributed hydrological
models have been calibrated only by considering runoff. However, other el-
ements of the hydrological process, such as the share of evapotranspiration
in water balance or infiltration rate, can be misrepresented by models; for
example, assessing the effect of climate change on the water balance in an
intensively irrigated area is not solid when a hydrological model is cali-
brated only by focusing on runoff (Gupta et al., 2006; Montanari and
Koutsoyiannis, 2012; Pokhrel et al., 2012). It is reported that selecting dif-
ferent parameter sets can lead to similarly good results for simulated dis-
charge, which is referred to as equifinality (Abbaspour, 2022; Beven,
2006). One of the possible ways to avoid equifinality is multi-objective cal-
ibration, i.e. employing in calibration additional temporal and spatial vari-
ables, such as crop yields, soil moisture, base flow, potential and actual
evapotranspiration, leaf area index (LAI), infiltration, biomass index, and
tile flow can be included in calibration processes (Alfieri et al., 2022;
Azimi et al., 2020; Brocca et al., 2017; Brocca et al., 2020; Ciabatta et al.,
2016; De Santis et al., 2021; Fernandez-Palomino et al., 2021; Pfannerstill
et al., 2017; Pokhrel et al., 2012). For example, Ilampooranan et al.
(2021) have used crops as a sensor to increase the reliability of the hydro-
logical model in an agricultural watershed in Iowa. In their research, crop
yield calibration reduced the model's parameter uncertainty and predictive
ability. Distributed variables such as crop yield, Soil Moisture (SM), and LAI
are helpful variables in the calibration step to increase the runoff accuracy
and the accuracy of ET or general water balance components
(Ilampooranan et al., 2021).

Achieving accurate results by employing hydrological models could be
a particular challenge for hydrologists in trans-boundary basins, when ade-
quate measured data is not available freely or the available datasets have
different accuracy or resolutions (Aslam et al., 2020; De Lannoy et al.,
2022; Hirbo Gelebo et al., 2022; Liersch et al., 2017; Mianabadi et al.,
2020; Rougé et al., 2018). The importance of hydrological assessments in
transboundary basins is not only related to the comprehensive evaluation
of water balance but has an impact on the issues related to international
conflict management strategies and sustainable basin-wide management,
particularly in the era of climate change (Hajihosseini et al., 2020; Hirbo
Gelebo et al., 2022; Khan et al., 2017; Liersch et al., 2017; Mianabadi
et al., 2020; Rougé et al., 2018).

Global gridded datasets have been employed to deal with gaps in the
datasets, inadequately measured datasets, or entirely unavailable datasets
(Beck et al., 2017; Eini et al., 2019; Eini et al., 2021b; Koohi et al., 2021).
Generally, these global (or regional) datasets can be categorized into
three groups: purely ground-based, satellite-based, and the combined first
2

two datasets (Brocca et al., 2019; Eini et al., 2019; Eini et al., 2021b;
Piniewski et al., 2021). In recent years, remotely sensed datasets have
been widely applied in hydrology for calibration and validation steps of
models and as ancillary datasets, such as meteorological data, in the set-
up step (Alfieri et al., 2022; Eini et al., 2022a). It is highlighted that satellite
products can improve the consistency of distributed hydrologicalmodels by
providing spatially distributed data (Ilampooranan et al., 2021; Ren et al.,
2018). Finally, in several studies, the accuracy of results is enhanced by
adding new processes or modifying default empirical equations in
process-based models (Delavar et al., 2022; Delavar et al., 2020; Eini
et al., 2020). All of the mentioned approaches eventually could enhance
the model's results for the water balance simulations at the basin scale.

Soil moisture (SM) is one of themost important variables linking energy
andwater cycle and its knowledge is strategic both for runoff formation and
crop development (Azimi et al., 2020; Brocca et al., 2017). This variable,
which covers the basin area, influences runoff, land-atmosphere carbon
fluxes, vegetation, and evapotranspiration processes (Azimi et al., 2020;
Brocca et al., 2020; De Santis et al., 2021; Lal, 2004; Or et al., 2013). In
the real world, SMvaries not only temporally and in two spatial dimensions
but also vertically. Sincemeteorological parameters, soil texture, land cover
and land use, groundwater water table level, and topography are effective
on SM, thus, ground-based measuring of this variable requires a large net-
work of spots. Moreover, the model uses parameterization of soil and
land cover and climate forcing, which is not always accurate. So having spa-
tially distributed information on soil moisture is paramount to improving
their skills and building a robust system (Massari et al., 2014; Ochsner
et al., 2013). Gravimetric sampling or Time Domain Reflectometry (TDR)
can be considered as the most feasible measurement techniques for deter-
mining SM. Simple mechanisms and the capability to determine SM at var-
ious depths are the advantages, while being costly and time-consuming are
the disadvantages of this method (Azimi et al., 2020; Huisman et al., 2001).

To overcome this issue, SM satellite-based products could be an alterna-
tive of in-situ measurements. According to the literature, several SM prod-
ucts from different satellites are available and usable in hydrological
simulations. Three satellite missions have been particularly launched for
the SM measurements (in 2006, The Advanced Scatterometer (ASCAT), in
2010, the Soil Moisture Ocean Salinity- (SMOS) and, in 2015, the Soil Mois-
ture Active and Passive mission SMAP) (Entekhabi et al., 2010; Kerr et al.,
2010; Wagner et al., 2013). One of the largest projects belongs to European
Space Agency (ESA), namely, the Soil Moisture CCI project (https://esa-
soilmoisture-cci.org/) which uses several active and passive sensors on 13
satellites to provide a globally gridded SM dataset (Brocca et al., 2011;
Dorigo et al., 2017). The global SM satellite-based datasets have success-
fully been applied in flood and runoff modeling in different regions. How-
ever, the small infiltration depth (less than 50 mm) and the large spatial
resolution (more than 25 km) of the SM products cause critical challenges
in hydrological modeling (Azimi et al., 2020; Brocca et al., 2017; Brocca
et al., 2011; De Santis et al., 2021; Modanesi et al., 2020). Moreover,
Modanesi et al. (2020) stressed the importance of satellite surface soilmois-
ture datasets to provide the highest level of information about the impacts
of dry and drought conditions on crop yields in India.

As an agro-hydrological model, the Soil and Water Assessment Tool
(SWAT) has been globally employed in simulating agro-hydrological pro-
cesses, such as surface runoff, evapotranspiration, crop growth, vegetation
dynamics, and snow melt (Akoko et al., 2021; Eini et al., 2023; Gassman
et al., 2014; Piniewski et al., 2017; Tan et al., 2019; van Griensven et al.,
2012; Wang et al., 2019). This model by providing a wide range of tools,
such as farm management modules (e.g., irrigation, fertilizer, tillage, graz-
ing, and pesticide), daily and sub-daily runoff modules, land use changes
module, water quality module, crop growth module, and options for imple-
menting man-made structures, facilitates users to have comprehensive and
reliable assessments of the hydrological cycle within a catchment (Arnold
et al., 2012; Gassman et al., 2007). In addition, this model is freely avail-
able, and users can modify the core of the model for different purposes
(Delavar et al., 2022; Eini et al., 2020). An enhanced version of this
model, entitled SWAT+, was recently released (Bieger et al., 2019;
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Bieger et al., 2017; Wagner et al., 2022). The new version is extensively
changed and provides decision tables in the modeling process to improve
the realism of farm management and reservoir operation (Arnold et al.,
2018; Wu et al., 2020). In addition, in the SWAT+model, the new “gwflow”
module is included for entirely connected interactions between surface and
groundwater simulations (Bailey et al., 2022; Bailey et al., 2020). Several stud-
ies have forced SWAT to run or calibrate with remotely sensed datasets.
Satellite-based products, such as SM, leaf area index, precipitation, tempera-
ture, evapotranspiration, and land use maps, are used in both SWAT configu-
ration and calibration steps (Azimi et al., 2020; Eini et al., 2019; Eini et al.,
2022a; Ma et al., 2019; Pfannerstill et al., 2017). The key highlight of these
studies is calibration SWATwith satellite-based products enhancesmodel per-
formance. Moreover, multi objective calibration helps to reduce uncertainty
range and equifinality of SWAT, especially by employing remotely sensed
datasets (Kundu et al., 2017; Rajib and Merwade, 2016; Rajib et al., 2016).
Still, according to the literature, application of satellite-based SM in the cali-
bration of the SWAT model in transboundary river basins and different
depth of soil is assessed in few studies; in addition, in this study, a new perfor-
mance indicator (SPAtial EFficiency (SPAEF), Demirel et al. (2018)) is used to
evaluate the accuracy of SM as a spatial variable. This indicator is developed
particularly for spatially distributed variables, and the advantages of
employing this indicator is discussed in Demirel et al. (2018).

In this study, a modified version of the SWAT+model for the first time
was calibrated by employing a multi-objective modeling approach that in-
volved not only discharge stations, but also the CCI-SM product (remotely
sensed dataset). Two calibration scenarios were tested: the first, conven-
tional one, employing discharge data; and the second one, employing
both discharge and satellite-based SM data. The effect of multi objective
scenario and single objective scenario on crop yields also was assessed.
The Odra (Oder) River Basin (ORB), a large-scale transboundary river
basin in Central Europe that drains water from areas in the Czech
Republic, Poland, and Germany to the Baltic Sea, is selected as the study
area (Eini et al., 2022b; Piniewski et al., 2017).

2. Methodology

2.1. Study area

The Odra River Basin (ORB) is located in Central Europe and is among
the largest river basins in European Union (thefifth largest river basin). The
mean annual runoff of this transboundary basin is 154mm (567m3/s), and
the long-term annual average of precipitation is approximately 650 mm.
ORB covers 119,041 km2, of which 89 % is located in Poland, 4.9 % in
Germany, and 6.1 % in the Czech Republic. of the river is approximately
840 km long, with sources in the Sudetes Mountains in the Czech
Republic and the estuary to the Szczecin Lagoon connected to the Baltic
Sea in its southern part. The great majority of the drainage area spans the
Central European Plain, with only southern-most parts being mountainous
(Fig. 1). More details are available in Piniewski et al. (2021), Piniewski
et al. (2017), and Marcinkowski et al. (2022). The location of ORB and its
hydrologic objects are presented in Fig. 1.

The historical crop yield data formajor crops (winterwheat, spring barley,
rapeseed, and corn) were extracted from Central Statistical Office of Poland
(GUS, https://stat.gov.pl/en/topics/agriculture-forestry/) database at prov-
ince level. The average of crop yields in Wielkopolskie, Zachodniopomorskie,
Lubuskie, Dolnośląskie, Śląskie, Łódzkie, and Opolskie provinces were in-
cluded in this study.

2.2. Configuration of agro-hydrological model

The new version of SWAT, namely, SWAT+, was used in this study.
This study uses a modified version of SWAT+. In the modified version,
minor and major errors in some subroutines in standard SWAT+, such as
misnamed variables related to groundwater module, water quality module,
wrong initialized constant values for surface processes, evapotranspiration
module, tillage operations, crop simulation module, and lateral flow
3

module, were fixed and some improvements in wetland condition were
made. These modifications and codes are available on https://github.
com/andrejstmh/SWATplus. The model was set up in the QGIS interface,
which is also an open-access software, using the QSWAT+ plugin
(SWAT+ installer v.2.1.4, https://swat.tamu.edu/software/plus/).

The ORB was divided into 1476 subbasins and 20,000 hydrologic re-
sponse units (HRUs). The pre-defined watershed delineation option was
chosen in the setup process and the subbasins and channels from the
Poland SWAT model setup of Marcinkowski et al. (2022) were used. The
ORB model contains 176 lakes (natural lakes and reservoirs), the manage-
ment schedules of 11 major crops (including winter wheat, spring barley,
corn, silage corn, sugar beet, potato, rapeseed, cabbage, apple, and fescue,
which are all rainfed), and the tile drainage system. Weather data (precip-
itation, maximum and minimum temperature, humidity, wind speed)
were extracted for each of the subbasins from a 2 km regional dataset
(Piniewski et al., 2021), and solar radiation was extracted from Copernicus
ERA5 global dataset (https://cds.climate.copernicus.eu/). The Penman-
Monteith method was chosen for calculating potential evapotranspiration.
Daily runoff (26 discharge stations, source: The Institute of Meteorology
and Water Management (IMGW-PIB), Warsaw, Poland) and satellite-
based SM were calibrated for the period 1997–2019 (1997–1999 warm-
up period, 2000–2010 calibration, and 2011–2019 validation). Details of
used digital layers, including the 50 m resolution digital elevation model,
land use map, and soil map, are described in Marcinkowski et al. (2022).

The management schedules of mentioned crops is based on potential
heat unit (PHU), and essential operations such as fertilizer, planting, tillage,
harvest or harvest and kill were included in the model. In the modified ver-
sion of used SWAT+ model, crops module is based on number of days to
maturity and potential heat units.

2.3. Satellite-based SM dataset

This study employed ESA (European Space Agency) CCI (Climate Change
Initiative) SM version 07.1. This product spans more than 40 years
(1978–2021), and different active and passive sensors are used to generate
this dataset. This product has three active, passive, and combined products;
data are freely available at https://esa-soilmoisture-cci.org/. The resolution
of this product is 0.25° and has daily time step. We have employed the com-
bined dataset, which increases the chance of taking at least one sensed SM
for a particular day and pixel, thus decreasing the number of data gaps. Addi-
tionally, combined satellite-based datasets generally perform better than indi-
vidual sensor datasets (Modanesi et al., 2020). This product has been used in
several studies with different purposes in different regions with diverse cli-
mates and has shown relatively good accuracy (Almendra-Martín et al.,
2021; Dorigo et al., 2017; Kovačević et al., 2020; Ma et al., 2017; McNally
et al., 2016; Modanesi et al., 2020; Zhang et al., 2019; Zhang et al., 2021).
This dataset was extracted over the 20,000 HRUs, and average-weighted
time series were calculated for each subbasin (1476 subbasins).

According to the literature, satellite-based SMdatasets should be corrected
due to the large-scale resolution and irregular time intervals on surface and
depth (Albergel et al., 2008; Wagner et al., 1999). In this regard, Soil Water
Index (SWI) is proposed. This method corrects the anomalies of satellite-
based SM and is based on an exponential filter equation. In this study, SWI
is employed tomatch the depth of simulated SMand satellite-based SM.More-
over, SWI is used in several studies with different proposes, and the effective-
ness of this method for adjusting the SM time series is highlighted (Brocca
et al., 2010; Dorigo et al., 2015; Dorigo et al., 2011; Liu et al., 2011). A com-
prehensive explanation and different applications of this index are presented
in Massari et al. (2014) and additional features of this index can be found in
Wagner et al. (1999), and Ceballos et al. (2005).

2.4. Objective functions

Finding an appropriate objective function for multi-objective calibra-
tion and validation is controversial, especially when one or more datasets
are satellite-based products and spatially distributed over the study area.

https://stat.gov.pl/en/topics/agriculture-forestry/
https://github.com/andrejstmh/SWATplus
https://github.com/andrejstmh/SWATplus
https://swat.tamu.edu/software/plus/
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https://esa-soilmoisture-cci.org/


Fig. 1. The location of ORB in Europe, rivers, discharge stations, and topography.
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Two objective functions were employed for discharge and SM values in this
study. The first is a ground- and point-based dataset and the second is a
satellite-based dataset distributed over ORB. According to the literature,
4

the Kling–Gupta efficiency (KGE) (Kling and Gupta, 2009) is widely used
for discharge calibration (Knoben et al., 2019), and in this study, it also is
selected for the discharge accuracy evaluation. For the distributed variable,

Image of Fig. 1


Table 1
Final values of calibrated parameters for both calibration strategies (average values
across calibration groups) and initial parameter ranges.

Change
method

Parameter Initial range of
parameters

Final value

Lower
band

Upper
band

Single-objective Multi-objective

Absolute
value

alpha.gw 0.01 0.1 0.06 0.04
bf_max.gw 0.01 1 0.29 0.61
chn.rte 0.05 0.2 0.18 0.08
deep_seep.gw 0.001 0.2 0.05 0.14
epco.hru 0 0.3 0.07 0.05
esco.hru 0.5 1 0.94 0.95
flo_min.gw 1 5 3.31 3.27
lat_time.hru 0.5 2 1.04 0.93
perco.hru 0.85 0.99 0.96 0.96
revap_co.gw 0.02 0.1 0.023 0.04
revap_min.
gw

4 10 7.05 5.76

sp_yld.gw 0 0.2 0.09 0.04
Relative value awc.sol −0.2 0.2 −0.155 0.14

bd.sol −0.3 0.3 0.29 0.02
cn2.hru −0.2 0.2 −0.02 0.11
cn3_swf.hru −0.5 0.5 −0.29 −0.35
k.sol −0.2 0.2 −0.195 −0.02
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a relatively new metric, SPAtial EFficiency (SPAEF), is used (Demirel et al.,
2018; Koch et al., 2018). SPAEF reflects correlation, coefficient of variation,
and histogram overlap of the observed datasets (i.e., CCI-SM) and model's
output (i.e., SWAT+) (Koch et al., 2018). In this study, we have used
SPAEF based on time variation in each subbasin. Monthly SMs are assumed
that are map pixels, and then, SPAEF for each subbasin was calculated.
These two metrics are proposed to evaluate the accuracy of distributed hy-
drological models, particularly if one or more variables are spatially distrib-
uted over the study area, such as SM or evapotranspiration variables.

2.5. Calibration strategy

In the first step which is a single-objective (SO) calibration of discharge,
KGE indicator was selected as an objective function. The second step which
is a multi-objective (MO) calibration of discharge and soil moisture, KGE
and SPAEF indicators were employed in calibration process. It should be
mentioned that before starting to calibrate the model, crop yields were
assessed and crop parameters, such as PHU (Potential Heat Unit), bio-
mass/energy ratio, base and optimum temperature, and harvest index
were fixed.

For discharge simulations at 26 discharge stations (2000–2010 calibra-
tion, and 2011–2019 validation), SWATplus-CUP (https://www.2w2e.
com/home/SwatPlusCup) SUFI-2 (SPE) algorithm (Abbaspour et al.,
2015) was used with 500 simulations in each iteration. For calibration of
SM and calculating SPAEF indicator, a script in R programming language
was used. The monthly river discharge was calibrated in discharge stations
and SMwas calibrated over subbasins at monthly time steps. In the SO step,
the weight of objective function (maximizing KGE) for each discharge sta-
tion was chosen based on long-term average of observed runoff. In the
MO step, the objective function was maximizing KGE (for discharge) and
SPAEF (for SM) indicators at the same time and both of these parameters
had the sameweight in the final multi-objective function. It should bemen-
tioned that in the MO step, the same list of parameters, which were used in
SO step, was also recalibrated with the similar initial ranges.

In the SWAT+ model, the SM output is the plant available water con-
tent in the soil. Its values can vary between the wilting point (0 mm of
H2O) and saturated conditions (value depending on the soil bulk density).
SWAT+provides SM at daily, monthly, and yearly time steps for the entire
soil profile and 300 mm of topsoil for each HRU. In this regard, firstly, by
employing the SWI index, the CCI-SM dataset was matched according to
the depth (topsoil and entire soil profile) of the model's SM output, then
the adjusted SMwas employed for calibration. In the MO step, the constant
value of the wilting point of each soil type was firstly added to the SWAT+
SM outputs at HRU level, and was then used in calibration process.

The calibration step includes sensitive parameters of the SWAT+model
in the study area. The parameter selection was done based on the authors'
experience, sensitivity analyses in SWATplus-CUP software (comprehen-
sive description of sensitivity analyses and uncertainty analysis in the
SWAT model are available in Abbaspour et al. (2015), Yang et al. (2008)
and Abbaspour et al. (2007)), and suggested parameters in the literature
(Abbaspour et al., 2018). Moreover, discharge stations were classified
into six groups according to the subbasins' land use and soil type for spatial
calibration of influential parameters.

3. Results

3.1. Single-objective calibration approach

As mentioned before, in the SO step, discharge stations were calibrated
without considering the SM spatial distribution. Sixteen parameters for
each discharge station groups were calibrated. In the SWAT+ model, one
of the newly introduced parameters is PERCO (percolation coefficient,
which varies between 0 and 1). This parameter regulates percolation
from the base soil layer and can be employed to control percolation if an im-
pervious layer or highwater table exists (Wagner et al., 2022). According to
the analyses, this parameter was the most influential parameter on
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discharge in the current study. In the first step, this parameter was cali-
brated and fixed to a value of 0.96, which in general results in relatively
high percolation; then, other parameters were calibrated (Table 1). The
model generally shows good accuracy in runoff simulations (according to
Knoben et al. (2019)), and average KGE for all discharge stations is
∼0.60 and ∼0.63 in the calibration and validation periods, respectively.
The results for the main discharge stations are presented in Table 2, and
Fig. 2 presents the KGE index in all the discharge stations. However, in
the north of the basin, there is a discharge station with the lowest KGE
(−0.39, average runoff = 2.17 m3/s). Fig. 2 shows that the model in the
south of the basin (mostly mountainous) has the lowest accuracy in runoff
simulations.

3.2. Multi-objective calibration approach

3.2.1. Adjusting the SWI index
Based on the SWI index, the satellite-based SM dataset was adjusted. In

Fig. 3, the effect of the SWI method on CCI SM at basin level is presented,
and SWAT+model SM in three different conditions, including, before cal-
ibration, the calibrated model only with runoff, and calibrated model with
runoff and SM at daily steps, are shown (for the period 2000–2019). As it is
visible, the soil water content in the SWAT+model is underestimated. In
this regard, SM was added to the calibration process. As mentioned, these
variables were calibrated for two levels, including 300 mm of topsoil and
the average available water content in the entire soil profile. Calibration
and validation were done on the subbasin level, meaning 1476 SM times-
series were extracted from CCI SM, then were adjusted using SWI and em-
ployed in calibration and validation periods.

3.2.2. SM and runoff calibration
The objective of MO strategy was to maximize the SPAEF index for SM

and KGE for runoff. In MO strategy, the same set of parameters for each of
the discharge station groups, which was previously used in the SO strategy
(Table 1), was now used also in the MO calibration strategy. The soil avail-
able water content (AWC) was the most sensitive parameter in SM calibra-
tion, according to sensitivity analyses in SWATplus-CUP (Table 1). The
accuracy of runoff simulations for discharge stations significantly increased
(average of KGE in all discharge stations is ∼0.67 in the calibration and
∼0.69 in the validation periods) compared to the SO approach. It should
be mentioned that for 16 discharge stations improvements in KGE were
achieved, and for 10 discharge stations (mainly close to mountains), the

https://www.2w2e.com/home/SwatPlusCup
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Table 2
The accuracy of the model in runoff simulations in the main discharge stations.

River and discharge
station name

Observed
Q (m3/s)

KGE

Single objective Multi objective

Calibration Validation Calibration Validation

Odra at Gozdowice 474.1 0.77 0.78 0.81 0.83
Odra at Cigacice 188.1 0.86 0.81 0.75 0.79
Warta at Skwierzyna 117.36 0.73 0.78 0.84 0.85
Noteć at Nowe
Drezdenko

66.32 0.56 0.63 0.81 0.88

Odra at
Racibórz-Miedonia

63.28 0.45 0.53 0.67 0.65
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KGE values were decreased. The accuracy of the runoff simulations is pre-
sented in Fig. 4 and Table 2.

Fig. 5 shows the SPAEF distribution for SM accuracy over sub-basins. As
it is visible, SPAEF (average = 0.37 topsoil and 0.31 entire soil profile)
shows that the model has relatively better accuracy in SM simulations. Ac-
cording to Fig. 5, there is no visible pattern in the spatial distribution of the
model's accuracy in SM simulations. Moreover, SPAEF determines that the
Fig. 2. The spatial distribution of the KGE indicator for both strategies, average of river
multi-objective strategy relative to a single-objective strategy).
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model has better accuracy in topsoil SM simulations. This could be expected
to the nature of the CCI SM dataset, which is reliable for the 5 cm of topsoil.

3.3. Effect of different approaches on crop yields

In order to have a robust comparison between the SO andMO strategies,
crop yields were also assessed. In this regard, the yields of major crops in
the ORB, including winter wheat, spring barley, rapeseed, and corn, were
extracted from the SWAT+model for both strategies and were compared
with observed data, which is the annual average of mentioned provinces
in Section 2.1. It should be mentioned that the SWAT+ model provides
the dry weight of crop yields, and for assessments, the observed values
were converted from fresh weight to dry weight yields, assuming that hu-
midity equals 15 % and 20 % for winter wheat/spring barley and corn/
rapeseed, respectively.

As it is visible in Fig. 6, crops have wider ranges of yields in MO ap-
proach, which is closer to observed data (excludingwinter wheat). The pos-
itive effect of MO approach is most visible in rapeseed yields. Both
approaches have a wider estimates of winter wheat and mainly over esti-
mated winter wheat yields.

According to Fig. 7, for barley and wheat the SO approach produced
mostly overestimated crop yields compared to the MO approach. The
discharge (down left, m3/s), and changes in KGE (improvements or reductions for a

Image of Fig. 2


Fig. 3. Basin-averaged changes in SM in the entire soil profile (mm/mm): CCI SM, adjusted SM based on SWI, SWAT+, and the effect of calibration on SM for the period
2000–2019.

Fig. 4. Distribution of KGE for river discharge in SO and MO approaches.
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opposite effect (underestimated yields in SO approach) is visible for rape-
seed. For corn, the difference between yield dynamics in SO and MO ap-
proaches is very low. The correlation between simulated and observed
yields is generally low, mainly due to the fact that numerous anthropogenic
factors, not accounted for in SWAT+, can affect crop yields. Moreover, in
2015 Central Europe had experienced a severe drought (Ionita et al.,
2017). In this particular year, according to the observed datasets barley,
wheat, and rapeseed yields did not change substantially, but corn yields
were more sensitive to drought. This is understandable, because drought
developed in August–September, mostly after harvest of cereals and rapeseed,
whereas corn which is harvested in late summer was more strongly affected.
This drop in corn yields is reflected in both SO and MO approaches, however
in the MO approach the response is more in line with observations.

Themodel performance in crop yield simulation is presented in Table 3.
To evaluate the performance of SWAT+ in both approaches, mean error
(tons/ha), coefficient of determination (R2) and percentage bias (PBIAS %)
were employed. According to the mean error and PBIAS, MO approach per-
formed better than SO approach being close to zero which is the optimum

Image of Fig. 3
Image of Fig. 4


Fig. 5. Accuracy distribution of SM (topsoil and average SM) according to SPAEF.
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value for these statistics. As it was already mentioned, correlation between
simulated crop yields and observed data is not acceptable.

4. Discussion

In this study the multi-objective calibration enhanced the SWAT+
model's accuracy in river discharge and crop yields simulations. Improving
the river discharge simulations and water balance components via multi-
objective calibration in the SWAT model was reported before in several
studies. For example, Eini et al. (2020), Eini et al. (2021a), and Delavar
et al. (2022) have employed runoff, aquifer water table, infiltration rate,
crop yields, and ET to increase the model consistency. By providing differ-
ent distributed outputs, SWAT facilitatesmulti-objective calibration and ro-
bust results for scenario simulations (Delavar et al., 2022). Moreover,
Ma et al. (2019) show that MODIS-based LAI significantly enhanced
the model flexibility and spatial distribution of vegetation cover in sub-
tropic regions.

Rajib and Merwade (2016) employed a time-dependent Soil Moisture
Accounting method in the SWAT model calibration and evaluated SM in
different layers in two watersheds in Indiana. They concluded that adding
SM into the calibration process leads to higherfitness of simulations and ob-
served datasets and improved efficiency metrics; the same result is ob-
served in our study. In addition, it is mentioned that SM calibration based
on in-situ root zone SM provides considerable improvement in SWAT per-
formance (Rajib et al., 2016). The SM, based onAdvancedMicrowave Scan-
ning Radiometer-Earth Observing System (AMSR-EOS) for 1 cm of topsoil,
was used in their study for HRU and sub-basin level, and it improved the
model's outputs in terms of root zone SM and runoff with corresponding
measured datasets (Rajib et al., 2016). Azimi et al. (2020) showed that
satellite-based SM assimilated from SMAP and Sentinel-1 could improve
the accuracy of river discharge simulations in the SWAT model.

In the SWAT model, the ET processes start from the HRU level at daily
steps, and each HRU has different land use, soil type, and slope (Arnold
et al., 2012; Gassman et al., 2007; Gassman et al., 2014). In this regard, cal-
ibrating the SWATmodel at the HRU level, particularly for distributed var-
iables, could lead tomore consistent results (Ma et al., 2019). In the current
study, calibration was done at the subbasin level due to a large number of
8

HRUs, large variability of hydroclimatic parameters, which affect the SM
values, and the resolution of CCI SM product. Thus, a similar approach
could be done in the smaller watershed and evaluate the SM accuracy of
the SWAT+ model at the HRU level. Pfannerstill et al. (2017) proposed
that expert knowledge could help accomplish hydrologically reliable
model results regarding the simulation of runoff and water balance compo-
nents. Multi-objective calibrated models can be used for water balance and
water accounting assessments; in addition, in transboundary basins, these
models are helpful for (inter-) national studies (De Lannoy et al., 2022).
Moreover, we would like to mention that capturing the dynamic of crop
yields in this large basin with a wide range of recorded crop yields was
one of our limits. In future works, this limit can be addressed by employing
satellite-based datasets such as LAI or canopy height estimations.

The calibration process using SM can change the water balance of the
basin and increase the uncertainty of the output; thus it should be men-
tioned that the water balance of the basin should be checked via available
parameters such as ET, crop yields, groundwater recharge, and river dis-
charge (De Lannoy et al., 2022; Delavar et al., 2022; Eini et al., 2020;
Koohi et al., 2022). Moreover, it could be recommended to evaluate the ef-
fect of root zone soil moisture datasets (such as the dataset which is pro-
vided by Grillakis et al. (2021) or Copernicus Global Land service) in
improving the accuracy of the SWAT+ model. Furthermore, it could be
stated that satellite-based soil moisture data can be validated by in-situ ob-
servations and then added into the calibration step this approach can de-
crease the uncertainty of hydrological modeling; however, in large river
basins it could be expected that only short time series of in-situ soil moisture
are available. Effect of multi-objective calibration on crop yield, ET, and in-
filtration rate can be assessed, and this could decrease the uncertainty of
comprehensive hydrological modeling.

5. Conclusion

In this study, a transboundary basin in the Baltic Sea region (Odra river
basin) was selected to investigate the accuracy of the SWAT+ agro-
hydrological model in river discharge, crop yields and soil moisture simula-
tions. A satellite-based soil moisture dataset (CCI SM)was chosen as the ob-
served soil moisture dataset. In the single-objective calibration (only

Image of Fig. 5


Fig. 6.Distribution ofmajor crop yields in SO andMO strategieswith the observed data (for period 1999–2019 for winter wheat, barley, and rapeseed; for period 2004–2019
for corn).
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discharge) approach, the SWAT+ model showed good accuracy in runoff
simulations, and the average KGE was above 0.60 and 0.63 in the calibra-
tion and validation periods, respectively. Satellite-based soil moisture was
adjustedwith SWI index andwas added to the calibration step as the second
variable in the multi-objective approach. In the multi-objective approach
(discharge and soilmoisture), the accuracy of simulations in river discharge
stations substantially increased (KGE= 0.67 in the calibration and 0.69 in
the validation periods) compared to the single-objective approach. The
SPAEF index indicated that adding soil moisture in the calibration process
(as we did using MO approach in this study) could improve the model's re-
liability.Moreover, assessing crop yields shows thatmulti-objective calibra-
tion also could improve the accuracy of model in estimating crop yields.
The current results and presented approach can be used in transboundary
river basins and regions that lack observed data, and it is important for cli-
mate change studies since this method delivers a robust model. It will also
be a useful approach for model-based water accounting studies. Moreover,
we recommend comparing different soil moisture products (especially
high-resolution products) in future studies and trying to capturing dynamic
of crop yields.
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Table 3
Performance of SWAT+ in crop yields simulations for both approaches.

Winter
wheat

Barley Rapeseed Corn

SO MO SO MO SO MO SO MO

Mean error (tons/ha) 0.45 0.06 0.52 0.09 −0.38 0.06 0.14 0.03
R2 0.32 0.14 0 0.08 0 0.05 0.18 0.31
PBIAS % 12 1.7 17 3.2 −18 2 2.9 0.6

Fig. 7. Temporal variation of basin-averaged simulated (SO and MO) and observed crop yields in the ORB.
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