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3. Logistic regression and out-of-sample framework

The logistic regression classifier estimates coefficients to minimise

The predicted probability is defined as

A separate classifier is trained for each test dataset, excluding all 
samples from that dataset from training (dataset out-of-sample).

Figure: Distribution of predicted probabilities for test days from selected 
out-of-sample datasets in the period 2005-2014 using logistic regression classifiers.
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Climate models can be identified 
from observations based on 

temperature maps from 
individual days.

1. Motivation and research question

● Climate model performance is typically evaluated on climatological 
timescales to minimise the effects of internal variability.

● However, in some cases multi-decadal data are not (yet) available 
(decadal predictions, km-scale simulations, e.g. from NextGEMS).

● Machine and statistical learning methods are opening up new ways 
to identify patterns even in the presence of high internal variability.

Can climate models and observations be separated based only on 
their temperature output from a single day?
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4. Main results logistic regression

● Most test samples are classified correctly via logistic regression 
● Higher resolved models tend to be misclassified more often
● ICON (resolution 5km) cannot be clearly assigned to either class

5. Conclusions and outlook

● Individual days are enough to robustly identify temperature maps 
as coming from climate models or from observations.

● Output from the latest, km-scale models can’t be identified as 
belonging to either category by a logistic regression classifier.

● More complex classifiers based on convolutional neural networks 
are able to correctly identify also km-scale model output.

● Future  applications of this framework will contribute to the model 
evaluation toolbox and, for example,
○ provide assessments of model performance from daily data,
○ pinpoint regions important for model-observation separation,
○ separate other dimensions such as model generations, and
○ build adversarial networks as novel ways for bias correction. 

2. Data 

● 43 CMIP6 models using historical forcing
● 4 observational datasets (ERA5, MERRA2, 20CR, DOISST)
● 1 km-scale model (ICON-Sapphire; Hohenegger et al. 2023)
● Daily global temperatures at 2.5°x2.5° in the period 1982 to 2014
● Land grid cells masked and daily global mean removed
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no. 101003469), SNF (grant no. 167215), SDSC (DASH; C17-01), and ETH Zurich.

Figure: Example temperature maps from four datasets on March 
21st 2010. These maps are used as input for the classifiers.

Figure: Spatial representation of the regression coefficients used to 
separate daily temperature maps from models and observations.

5. Additional results

● A more complex convolutional neural network (CNN) is also able to 
correctly classify 75% of samples from ICON-Sapphire. 

● CNN classifiers are able to correctly classify samples even after bias 
correction using the mean seasonal cycle (not shown).

See pre-print for a full description of the methods and results. 

Figure: Distribution of predicted probabilities for test days from 
selected out-of-sample datasets in the period 2005-2014 using CNNs.
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