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Abstract: Climate change increasingly is affecting every aspect of human life on the earth. Many
regional climate models (RCMs) have so far been developed to carefully assess this important
phenomenon on specific regions. In this study, ten RCMs captured from the European Coordinated
Downscaling Experiment (EURO CORDEX) platform are evaluated on the river Chiese catchment
located in the northeast of Italy. The models’ ensembles are assessed in terms of the uncertainty and
error calculated through different statistical and error indices. The uncertainties are investigated
in terms of signal (increase, decrease, or neutral changes in the variables) and value uncertainties.
Together with the spatial analysis of the data over the catchment, the weighted averaged values are
used for the models’ evaluations and data projections. Using weighted catchment variables, climate
change impacts are assessed on 10 different hydro-climatological variables showing the changes in
the temperature, precipitation, rainfall events’ features, and the hydrological variables of the Chiese
catchment between historical (1991–2000) and future (2071–2080) decades under RCP (Representative
Concentration Path for increasing greenhouse gas emissions) scenario 4.5. The results show that,
even though the multi-model ensemble mean (MMEM) could cover the outputs’ uncertainty of the
models, it increases the error of the outputs. On the other hand, the RCM with the least error could
cause high signal and value uncertainties for the results. Hence, different multi-model subsets of
ensembles (MMEM-s) of 10 RCMs are obtained through a proposed algorithm for different impact
models’ calculations and projections, making tradeoffs between two important shortcomings of
model outputs, which are error and uncertainty. The single model (SM) and multi-model (MM)
outputs imply that catchment warming is obvious in all cases and, therefore, evapotranspiration
will be intensified in the future where there are about 1.28% and 6% value uncertainties for monthly
temperature increase and the decadal relative balance of evapotranspiration, respectively. While
rainfall events feature higher intensity and shorter duration in the SM, there are no significant
differences for the mentioned features in the MM, showing high signal uncertainties in this regard.
The unchanged catchment rainfall events’ depth can be observed in two SM and MM approaches,
implying good signal certainty for the depth feature trend; there is still high uncertainty about the
depth values. As a result of climate change, the percolation component change is negligible, with
low signal and value uncertainties, while decadal evapotranspiration and discharge uncertainties
show the same signal and value. While extreme events and their anomalous outcomes direct the
uncertainties in rainfall events’ features’ values towards zero, they remain critical for yearly maximum
catchment discharge in 2071–2080 as the highest value uncertainty is observed for this variable.

Keywords: climate change; regional climate model; specific region; ensemble evaluation; spatial
analysis; impact model; error; uncertainty; hydrological variables

Water 2022, 14, 3967. https://doi.org/10.3390/w14233967 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14233967
https://doi.org/10.3390/w14233967
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-5871-7181
https://orcid.org/0000-0002-5498-4370
https://orcid.org/0000-0003-1093-6040
https://orcid.org/0000-0003-4422-2417
https://doi.org/10.3390/w14233967
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14233967?type=check_update&version=2


Water 2022, 14, 3967 2 of 25

1. Introduction

Many regional climate models (RCMs) downscaled from global climate models (GCMs)
have so far been developed to simulate the climate properties of specific regions (precipita-
tion, temperature, and other hydro-climatological variables). They contribute to climatic
data projection and climate change impact models’ assessments on specific regions. How-
ever, their validity and prediction skills have always been under debate [1]. In this regard,
different RCMs’ performance evaluations and impact models’ assessments have been the
target of many studies over the last two decades [2–8]. Regarding climate change predic-
tions and simulations and their impact on the environment, some studies rely on only
one downscaled GCM family data set, RCM’s outputs for projection, and simulations of
catchments’ hydrological and hydro-climatological features [2,4,9,10]. The used model
could be either the most reliable one in the literature, or the one that ranks first among the
models evaluated in terms of error and uncertainty. The work [11] sorts some available
RCMs based on their biases compared with the observed data, and then, they select only
the subset of RCMs that have limited errors for climate change and impact model simula-
tions. In a later work [10], the best-performing model’s outputs, modified by two-step bias
correction techniques, are used for climate change impacts on a real-world water supply
system. The work [12] uses one RCM driven by two coarse resolution models’ boundary
conditions for precipitation data projection on an Indian summer monsoon, where the
spatial biases for seasonal mean precipitation are good towards the west and north of India,
and poor in the south and east. High values of biases and using bias correction techniques
show that a single model approach, even if the model is the most reliable one, cannot be
trusted totally in a decision-making process. Therefore, the quality of RCMs still needs
to be improved to see their application in solving real-world climate-related problems.
Refining the resolutions of the models cannot be considered a certain positive activity
for the models’ performance improvement. In this regard, work [13] shows that refining
the spatial resolution of a climate model to the small kilometer scales (2.2–4 km) could
improve the performances of the model. Whereas, other work [14] shows that this activity
could not bring about significant improvement in the convection-permitting simulation
of seasonal precipitation on the Iberian Peninsula. Hence, a comprehensive ensemble-
based assessment of the different models is needed to find important factors for model
performance improvements.

There are many studies proposing a multi-model ensemble approach for the evalua-
tion of different models and assessing the precipitation and temperature-based statistics
on different areas of interest [3,6,7,15,16]. The ensemble model approach demonstrates
and compares the errors and uncertainties between models well. However, when it comes
to climatic data projection and using hydrological models for making decisions about
future climate change adaptive planning, there is a question of whether considering the
application of one GCM-RCM with the least error, or multi model (different GCMs-RCMs)
with various error values is reliable. The work [17] highlights the role of RCMs as the
main source in bringing about diverse errors, and work [18] shows that only some en-
semble subset members perform well for particular climate change impact assessments.
In agreement with this, there are other studies assessing the application of the total or
subset of models considered for the climate prediction of catchments [19,20]. Even though
the ensemble approach provides a comprehensive view of the performance of different
RCMs and impact models, policymakers need a deterministic perspective of climate change
that affects the hydrological variables of their real-world projects. Using multi-model
ensemble mean (MMEM) outputs for projecting future hydrological variables could bring a
deterministic result to stakeholders. However, the literature shows that, while the MMEM
covers the uncertainty among the models, it has an up-and-down performance with high
output errors in some case studies [21,22] and small output errors in others [16,19]. Other
work [23] compares the performance of different RCMs for simulating different statistics of
precipitation, temperature, and hydrological data, with the final aim of selecting the best
ensemble subset for making MMEM suited to the different impact model’s assessment. It
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shows that averaging the catchment data could be an appropriate surrogate for small-scale
catchment of climatic properties. However, this work [23] does not apply the method for
climate change projection.

The current study aims to evaluate the ensemble RCMs and find the best subset of the
ensemble for projecting data and assessing the impact models’ results on a real case study.
In this regard, the proposed algorithm first finds the best model in terms of uncertainty
(MMEM model in our study) and then compares the different error metrics of the MMEM
model with the corresponding ones of other models. The models with fewer error values
than MMEM are selected as the final subset models whose average outputs are used in the
relevant impact model simulation and assessment. This error–uncertainty judgment for
the ranges of models between the two best-performing models in terms of uncertainty and
error leads to unbiased and balanced final results. In conclusion, there will be an answer
to the question of the extent to which single-model approaches deviate from multi-model
approaches in terms of output.

2. Data and Methods
2.1. Study Area

The study area refers to the river Chiese catchment where the Chiese mainstream has a
length of about 121 km, originating from Mount Adamello in the Trentino region (Figure 1).
The river Chiese is a large sub-tributary of the river Po, which is the longest river in Italy,
playing a major role in the development of the country in terms of various economic
activities. The area and perimeter of the catchment are roughly 971 km2 and 218 km,
respectively, and the catchment includes 18 rain gauges and 15 thermometer stations.
Along with the Gavardo hydrometer, these stations have contributed to the hydrological
analysis and calibration of the river Chiese catchment. This work is carried out in the
framework of the Lombardy Region CE4WE (Circular Economy for Water and Energy)
project. The A2A (Water Utility) area in Figure 1 refers to the interest area of A2A managers
for further water resource management activities based on estimated hydrological variables.
The managers need to have a perspective on the future water availability of the catchment
under an intermediate climate change scenario. For this purpose, the main assumption is
that the only forcing factor for climate change is CO2 emission. Other human climate forces,
such as changes in vegetation, soil, and water, as comprehensively mentioned in [24–26],
are not considered in this study.

Figure 1. The river Chiese catchment, located at the northeast of Italy.
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2.2. Hydrological Model

The river Chiese catchment is modeled using the TOPographic Kinematic AProx-
imation and Integration TOPKAPI [27] software, enabling the user to set up a physi-
cally based and fully distributed hydrological model with fine space–time resolution
(250 m× 250 m cell sizes and one-hour time step). To achieve this, various GIS-based
information, including the shapefiles of the catchment area, lakes, river network, and
the gauged stations (thermometers, rain gauges, and hydrometers) are taken together
with Digital Elevation Models (DEM). The maps of the soil and land-use units are col-
lected from different sources, such as the environmental protection agency, ARPA (https:
//www.arpalombardia.it/Pages/Ricerca-Dati-ed-Indicatori.aspx, (accessed on 30 Septem-
ber 2022)), and the A2A water utility. The model is constructed in the GIS interface of
TOPKAPI, MapWindow GIS, where a preprocessor is used to insert the input data, such
as land use, soil parameters, and monthly temperature values. It is worth mentioning
that the hydrological model has already been calibrated by another partner involved in
the project. Therefore, the calibrated model was used in the context of the present work
(more information about the TOPKAPI model, hydrological modeling, and calibration is
provided in the Supplementary Materials).

2.3. Under Study Climate Models

A total of 10 coupled climate models (CMs) were investigated in the current study.
The models were retrieved from the EURO-CORDEX CMIP5 (Coupled Model Intercom-
parison Project Phase Five) experiment [28] https://www.euro-cordex.net/, (accessed on
30 September 2022), and stored on the nodes of Earth System Grid Federation (ESGF),
https://esg-dn1.nsc.liu.se/login/, (accessed on 30 September 2022).

The data were analyzed at the finest resolution, 0.11◦ (~12.5 km, EUR-11 referring to
the models related to the European areas with the finest resolution) and considered for
the historical period of 1971–2000 as a baseline. The used coupled Climate models are:
CM5-RCA4, ECE-HIRH, ECE-RACM, ECE-RACMr12, ECE-RCA4, IPS-RCA4, Had-RACM,
Had-RCA4, MPI-RCA4, and Nor-HIRH, which include three RCMs and six GCMs, the
information of which is shown in Tables 1 and 2. ECE-RACMr12 refers to the same model
as ECE-RACM but considers a different realization (an ensemble experiment with different
initial states from ECE-RACM).

Table 1. GCMs were used in the current study and in the EURO-CORDEX ensemble experiment.

Model Name Abbreviation Reference Developer Institution

CNRM-CERFACS-CNRM-CM5 CM5 Voldoire, Sanchez-Gomez [29] National Centre for Meteorological
Research

ICHEC-EC-EARTH ECE Hazeleger, Severijns [30] Irish Centre for High-End Computing
EC-Earth Consortium, Europe

IPSL-IPSL-CM5A-MR IPS Dufresne, Foujols [31] Institute Pierre Simon Laplace
MOHC-HadGEM2-ES Had Collins, Bellouin [32] Met Office Hadley Centre
MPI-M-MPI-ESM-LR MPI Giorgetta, Jungclaus [33] Max Planck Institute for Meteorology

NCC-NorESM1-M Nor [34,35] Norwegian Earth System Model

Table 2. RCMs were used in the current study and in the EURO-CORDEX ensemble experiment.

Model Name Abbreviation Reference Institution

SMHI-RCA4 RCA4 Strandberg, Bärring [36] Swedish Meteorological and Hydrological
Institute, Rossby Centre

KNMI-RACM022E RACM van Meijgaard, Van Ulft [37] Royal Netherlands Meteorological Institute,
De Bilt, the Netherlands

DMI-HRIHHAM5 HRIH Christensen, Drews [38] Danish Meteorological Institute

https://www.arpalombardia.it/Pages/Ricerca-Dati-ed-Indicatori.aspx
https://www.arpalombardia.it/Pages/Ricerca-Dati-ed-Indicatori.aspx
https://www.euro-cordex.net/
https://esg-dn1.nsc.liu.se/login/
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2.3.1. Climate Models’ Performance Evaluations

Work [23] demonstrated that for small-scale case studies, the averaged climatic vari-
ables over the catchment are a good surrogate of the whole catchment climate features,
and they can be used for model evaluation and data projection purposes. Hence, together
with the ensemble spatial analysis of climate models, this study used a weighted catchment
approach, as used in [39], to evaluate the RCMs and impact models. In this approach,
every grid point within the catchment border represents a fictitious weather station, called
a node in Figure 2, playing the main role in the hydrological analysis of the catchment
and in the RCM performance evaluation. To guarantee the good use of CMs’ grid points
within the catchment, the longest and shortest east–west and north–south coordinates of
real weather gauges were used for the operation of the CMs and finding the region grid
points. That is why the outer catchment grid points were also visualized. In our study, all
the regional climate models showed the grid points with the same coordinates for both
hydro-climatological properties, temperature, and precipitation.

Figure 2. The grid points of the E-OBS (pink circles) in the Chiese domain. Blue diamonds and red
stars refer to the real gauge rainfall stations and CMs grid points. E-OBS grid points within the
catchment are called nodes.

The models were evaluated in two important terms, uncertainty and error, which
refer to two different concepts. Error and uncertainty could have an opposite conformity
for a CM, meaning that the model could perform with low error but high uncertainty in
reproducing or projecting particular catchment data, or vice versa. This is an important
issue that has rarely received attention, and the current study provides a solution to
overcome this challenge. For the uncertainty assessment, there are different factors affecting
the uncertainties in the outputs, including uncertainty in the parameterization, initial
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and boundary conditions, greenhouse gas emissions scenarios, and models [40]. In this
study, only uncertainty originating from the interaction of different coupled models was
considered. For this purpose, the multi-model ensemble mean (MMEM) model is a new
model resulting from averaging all the ensemble members. It was assumed that the MMEM
model was the best in terms of covering the uncertainty shortcomings of the model’s
outputs. For error assessment, the gridded observational-based daily dataset over the
Europe domain called E-OBS was used against CM outputs to evaluate the performance of
all the CMs. For this purpose, the last version of E-OBS was downloaded from the source
https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles (accessed on
30 September 2022) for both precipitation and temperature data over a 30-year control
period, from 1971 to 2000. The finest spatial resolution of the E-OBS data (0.10◦) was chosen,
and the E-OBS grid points for both temperature and precipitation were visualized within
the selection domain (Figure 2). As can be seen, 12 fictitious E-OBS stations are located
within the catchment border. Due to the finer resolution of E-OBS data, the number of
E-OBS grid points is more than that of the CM points within the catchment boundaries.

The monthly cumulative precipitation and monthly average temperature values are
the target variables for evaluating the CMs. The monthly values of CMs are accessible
directly from the source, while the daily E-OBS data should be aggregated over the month
scale. In this study, the precipitation and temperature variables for a node k are represented
by xi,j,k, where x = P (precipitation) or T (temperature); i : 1, 2, 3 . . . , 12, j : 1, 2, 3, . . . , 30,
k : 1, 2, 3 . . . , 12; and k : 1, 2, 3 . . . , 9. refer to the number of months, years, E-OBS and
CM nodes respectively. For every specific month and year, for example, i = 1 (January)
and j = 1 (year 1971), the current methodology introduces a variable that provides the
weighted average catchment value for the two target variables estimated by Equation (1).

Xi,j,catchment =

n f

∑
k=1

wkxi,j,k (1)

where n f represents the number of fictitious stations within the catchment, i.e., 9 and 12 for
the CMs and E-OBS data. wk refers to the weight of every node k calculated by the Thiessen
polygons method such that the ratio of the Thiessen polygon area associated with the node
to the total area of the catchment provides the weight of the corresponding node. The
weights not only specify the significance of the role of the grid points in the hydrological
analysis of the catchment, but also evaluate the suitability of CMs’ numerical schemes to
the layout of the catchment in case they have different grid schemes.

Figure 3 and Table 3 show the Thiessen polygons and area information together with
the weights and elevation of the fictitious stations (captured from the digital elevation
model) for both the CM and E-OBS datasets.

Figure 3. The Thiessen polygons of the fictitious stations of E-OBS and CMs’ data, left and right.

https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles
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Table 3. The Thiessen polygon area of fictitious stations together with their weights.

E-OBS CMs

Factitious
Station ID Area (km2) Elevation (m) Weight Area (km2) Elevation (m) Weight

1 32.82 228 0.034 77.14 313 0.079
2 73.53 497 0.076 101.95 626 0.105
3 106.06 354 0.109 146.69 837 0.151
4 76.35 1117 0.079 144.89 1535 0.149
5 112.00 564 0.115 104.70 1471 0.108
6 91.52 992 0.094 102.30 1737 0.105
7 101.80 658 0.105 159.84 1147 0.165
8 56.44 1284 0.058 109.40 2630 0.113
9 66.00 2186 0.068 24.10 3012 0.025

10 86.18 1918 0.089
11 76.79 656 0.079
12 91.52 2501 0.094

Summation 971.01 1.00 971.01 1.00

Root Mean Square, Mean, and Standard Deviation Errors (RMSE, ME, and SDE,
respectively) are the statistical error indices used to estimate the performance of the climate
models in terms of validation. RMSE is calculated after ordering the climate model and
E-OBS data associated with the benchmark period of nyears in ascending order, with the
objective of evaluating the extent to which the cumulative frequency of the cumulative
rainfall and temperature values obtained from the generic climate model is close to the
corresponding cumulative frequency of the E-OBS data. For every specific month i, for
example i = 1, the monthly errors for the given precipitation and temperature variables of
CM shown by X (X = P, T) are calculated by Equation (2) as follows:

RMSEX
i,catchment,z =

√√√√√∑
nyears
j=1 (X E-OBS

i,j,catchment − XCM
i,j,catchment

)2

nyears
(2)

where RMSEX
i,catchment,z represents the error of climate model z for simulating month i

catchment variable X; nyears defines the number of years in the control period, which is
30 in the current study; and XE-OBS

i,catchment and XCM
i,catchment stand for the E-OBS and climate

model precipitation or temperature values in month i, respectively. The representative
performance errors of the climate model z, where z varies from one to the number of CMs
under study (the 10 downloaded models plus MMEM), are obtained for precipitation and
temperature variables by Equation (3):

CMX
z,RMSE =

∑12
i=1 RMSEX

i,catchment

nmonths
(3)

where CMX
z, RMSE represents the RMSE of the climate model z in terms of precipitation

and temperature simulations, respectively. Indeed, the representative error is equal to the
average of all months’ RMSE values. Finally, nmonths represents the number of months in
a year, which is 12. Other error indices are based on the mean and standard deviation of
outputs calculated as follows:

µX
i,catchment,z =

∑
nyears
j=1 XCM

i,j,catchment

nyears
(4)
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σX
i,catchment,z =

√√√√∑
nyears
j=1

(
XCM

i,j,catchment − µX
i,catchment,z

)
nyears − 1

(5)

Accordingly, the ME and SDE indices of catchment output X are calculated for every
climate model z by Equations (6) and (7):

CMX
z,ME =

∑12
i=1

∣∣∣µX
i,catchment,z − µX

i,catchment,E−OBS

∣∣∣
nmonths

(6)

CMX
z,SDE =

∑12
i=1

∣∣∣σX
i,catchment,z − µX

i,catchment,E−OBS

∣∣∣
nmonths

(7)

2.3.2. Ensemble Member Selection for Impact Models Assessment

There are different approaches in the literature for using climate models’ outputs
in the hydrological and methodological models projecting future data and showing the
impacts of climate change on the environment. The pre-defined CMs could achieve different
ranks based on their error performance values. Moreover, the reliability of a model could
change for target variable reproduction. For example, while a model shows a small error for
generating precipitation data, it could have a high error for the temperature variable. Hence,
depending on the type of impact model calculated by CMs’ outputs, the employment
of CMs could change. For example, for the hydrological variables, precipitation is the
main source of catchment recharge, and temperature plays the main role in evaporation
and evapotranspiration. Hence, the reliable CM is the model with the lowest error for
reproducing both weighted catchment precipitation and temperature variables. In this
study, three weighted dimensionless error metrics are defined to rank the models in
different aspects [23].

εCMz,ME,catchment = wP CMP
z,M,catchment

∑11
z=1 CMP

z,ME,catchment
+ wT CMT

z,ME,catchment

∑11
z=1 CMT

z,ME,catchment
(8)

εCMz,SDE,catchment = wP CMP
z,SDE,catchment

∑11
z=1 CMP

z,SDE,catchment
+ wT CMT

z,SDE,catchment

∑11
z=1 CMT

z,SDE,catchment
(9)

εCMz,RMSE,catchment = wP CMP
z,RMSE,catchment

∑11
z=1 CMP

z,RMSE,catchment
+ wT CMT

z,RMSE,catchment

∑11
z=1 CMT

z,RMSE,catchment
(10)

In the above-mentioned equations, wP and wT are weighting factors for precipitation
and temperature errors, respectively, that satisfy wP + wT = 1. Equations (8)–(10) state
the relative performance of different models in the reproduction of target variables. The
neutral case is when wP = wT = 0.5 and in the limiting case, wP = 1 and wT = 0. The
exact values of the weights for the hydrological impact models are obtained after sensitivity
analyses and parameters tuning in the hydrological models.

Based on the error values, the CMs are ranked. The first ranked model is the most
reliable one in terms of fitting the observed data. However, it may not be the best for
covering uncertainty. The ideal case is the time when MMEM is ranked first, as it is the best
model in terms of error and uncertainty. It is not guaranteed that the MMEM model always
performs with the lowest error, and there could be a case when the MMEM model even
has the highest error. In this instance, there is a tradeoff between two concepts of error and
uncertainty, meaning that moving towards choosing the model covering uncertainty brings
about a model with high error. To tackle this challenge, this study introduces an algorithm
to select a subset of ensemble models that have average outputs which are unbiased and
balanced for both error and uncertainty (see Figure 4).



Water 2022, 14, 3967 9 of 25

Figure 4. Algorithm for balancing ensemble members between error and uncertainty for an impact
model assessment.

2.3.3. Projection and Climate Change Impacts Assessment

There are 10 climate change impact model assessments in this study, as shown in
Table 4. For all the models, the comparison periods are the 2070s in the future (2071–2080)
vs. the 1990s in the historical period of 1991–2000. The aim is to assess the impacts of
climate change on some hydro-climatological and hydrological variables under the RCP
4.5 climate change scenario. Every impact model is formed and calculated by its associated
and suitable subset ensemble CMs. The relevant weight values for finding the best CMs
are written in Table 4.

Table 4. Different impact models in the current study and relevant weight values for the associated
climate models.

Impact Model ID Explanation wP wT

1 Change in average monthly temperature values 0 1
2 Change in cumulative monthly precipitation values 1 0
3 Change in rainfall events’ depth 1 0
4 Change in rainfall events’ duration 1 0
5 Change in rainfall events’ intensity 1 0
6 Change in decadal balanced cumulative precipitation 1 0
7 Change in decadal balanced cumulative discharge 0.5 0.5
8 Change in decadal balanced cumulative percolation 0.5 0.5

9 Change in decadal balanced cumulative
evapotranspiration 0.5 0.5

10 Change in yearly maximum discharge 0.5 0.5

As we are dealing with a real project, all of the data generated by the best climate
model or the best subset of the ensemble were modified by the bias correction factors to
make all the simulations reliable for the decision-makers. There are many methods for the
estimation of the bias correction factors [41]. This study used the linear-scaling method
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that has parsimony as its main advantage [10]. According to this method, the CM monthly
precipitation data were corrected by multiplicative factors that bring the monthly means
of corrected precipitation to match their observed values in the benchmark past period.
On the other hand, the temperature data were adjusted through an additive term that
brings the corrected average monthly mean temperature to equal the observed values in
the benchmark past period. Thus, the corrections were the following for precipitation
(αP,i,catchment) and temperature (∆T,i,catchment), respectively:

αP,i,catchment =

(
P h

E-OBS

)
i,catchment(

P h
CM

)
i,catchment

i = 1, 2, 3 . . . , 12 (11)

∆T,i,catchment =
(

T h
E-OBS

)
i,catchment

−
(

T h
CM

)
i,catchment

i = 1, 2, 3 . . . , 12 (12)

where P denotes precipitation and T denotes temperature, the overline indicates the mean
operation, the subscript of E-OBS indicates the observed values, subscript h stands for
“historic period” (i.e., 1991–2000 in this study), and i = 1, . . . , 12 is the month index. The
corrected historical and future data are given by the following equations:(

Ph
CM

)′
i.j,catchment

= αP,i,catchment ·
(

Ph
CM

)
i,j,catchment

(13)

(
Th

CM

)′
i.j,catchment

= ∆T,i,catchment +
(

Th
CM

)
i,j,catchment

(14)(
P f

CM

)′
i.j,catchment

= αP,i,catchment ·
(

P f
CM

)
i,j,catchment

(15)(
T f

CM

)′
i.j,catchment

= ∆T,i,catchment +
(

T f
CM

)
i,j,catchment

(16)

where, in addition to the previously declared symbols, prime stands for “corrected value”,
superscript f indicates a future period (2071–2080 in this study), and j = 1, 2, . . . , 10 is the
year index.

Rainfall event characteristics, including duration, intensity, and depth were assessed
and compared. To accomplish this, the hourly data from the best-suited climate model
were downloaded and modified by the bias correction factors. Independent rainfall events
were selected based on an inter-event time ∆tthreshold of about 11 h, estimated based on
the concentration and time of the catchment [42]. Figure 5 shows the time axis of three
independent events where every event takes n hours starting from time t0 and ending at
time tn. While t0,k − tn,k−1 > ∆tthreshold and t0,k+1 − tn,k > ∆tthreshold, all the time differ-
ences within the event k and other subsequent events would be smaller or equal to the
threshold. As the result, the duration, intensity, and depth of event k are estimated by
Equations (17)–(19).

Lk= tn,k−t0,k (17)

D k =
n

∑
i=0

xi,k (18)

Ik =
Dk
Lk

(19)

where, Lk, Dk, and Ik represent the length (hours), depth (mm), and intensity (mm/hours)
of the rainfall event, k. Here, the minimum temporal rainfall resolution was assumed to be
one hour as the sub-hourly temporal resolution for the precipitation data is not provided
by the climate models.
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Figure 5. The time axis of three independent rainfall events.

After calculating the lengths, depths, and intensities of rainfall events, they were
compared between the future scenario and the historical period based on the cumulative
frequency distribution graphs.

2.4. Linking Climate Model with the Hydrological Model

To link the climate model with the hydrologic model, the outputs of the climate
models, precipitation, and temperature data were used as input to the hydrologic model.
To accomplish this, the Chiese catchment was modeled through the TOPKAPI software,
where the input variables and the parameters for the hydrologic model adjustments and
simulations were controlled and inserted through the TOPKAPI user interface windows.
The main receiver input windows are shown in Figure 6, where the climate model outputs
are assembled into the weather stations and monthly temperature windows. As observed,
two modules referring to hydrologic and climate models were linked only by two windows
in the TOPKAPI Inputs Interface to complete the coupling process. The Weather Stations
window includes the information on rain gauge and thermometer stations, including their
coordinates, elevation, and hourly data values, whereas the Monthly Temperatures window
contains the stations’ monthly average values for solving evapotranspiration equations
over the hydrologic simulation period.

Figure 6. TOPKAPI user interface windows for inserting the inputs.

The fictitious stations were reconstructed in the Chiese catchment through the Map-
Window GIS of TOPKAPI. The coordinates and elevation of the fictitious stations were
obtained from the climate model file source and digital elevation model data.

All the inserted data values were modified by the bias correction factors before as-
sembling. The coupling process was repeated for 1991–2000 and 2071–2080, considering
greenhouse gas emission scenario 4.5 to estimate and compare the hydrological components
of the catchment, including water discharge, percolation, and evapotranspiration. The
input variables in the weather stations and monthly temperature windows were changed
in the simulation, while the other parameters, such as soil type and land use, were assumed
to be constant and invariable.

3. Results
3.1. Climate Model Rankings and Ensemble Member Selection for Impact Models

Table 5 compares the dimensionless errors obtained by Equations (8)–(10) and ranks,
written in parenthesis, of the RCMs used for reconstructing the precipitation and tempera-
ture of the Chiese catchment over 1971–2000. Hy, P, and T refer to the error performances
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of the models in terms of suitability to the hydrology-based impacts simulations (models
7–10 in Table 4), precipitation-based impacts simulations (models 2–6 in Table 4), and
temperature-based impacts simulations (model 1 in Table 4).

Table 5. Different dimensionless errors and ranks of climate models for Chiese catchment for different
types of impact models.

Model
ID Model Name Hy P T

ME SDE RMSE ME SDE RMSE ME SDE RMSE
1 CM5-RCA4 12% (6) 10% (4) 11% (5) 12% (6) 10% (4) 11% (7) 12% (8) 10% (5) 11% (6)

2 IPS-RCA4 9% (4) 13% (6) 9% (3) 9% (5) 13% (6) 10% (6) 8% (4) 11% (6) 8% (3)

3 Had-RCA4 7% (2) 10% (4) 7% (1) 6% (3) 9% (3) 7% (3) 6% (2) 11% (6) 7% (2)

4 Had-RACM 7% (2) 6% (2) 7% (1) 4%(1) 4% (1) 5% (1) 9% (5) 7% (3) 9% (4)

5 MPI-RCA4 6% (1) 10% (4) 8% (2) 12% (6) 13% (6) 12% (8) 7% (3) 9% (4) 7% (2)

6 ECE-RACM 9% (4) 6% (2) 10% (4) 6% (3) 4% (1) 6% (2) 13% (9) 7% (3) 13% (7)

7 ECE-RACMr12 9% (4) 5% (1) 10% (4) 5% (2) 4% (1) 5% (1) 14% (10) 5% (1) 13% (7)

8 ECE-HIRH 12% (6) 11% (5) 11% (5) 16% (8) 17% (7) 15% (9) 7% (3) 6% (2) 7% (2)

9 ECE-RCA4 11% (5) 9% (3) 10% (4) 8% (4) 9% (3) 9% (5) 11% (7) 10% (5) 11% (6)

10 Nor-HIRH 8% (3) 9% (3) 8% (2) 13% (7) 12% (5) 12% (8) 3% (1) 7% (3) 4% (1)

11 MMEM 10% (5) 11% (5) 9% (3) 9% (5) 5% (2) 8% (4) 10% (6) 19% (7) 10% (5)

Overall, it can be seen that the MMEM model (the first-ranked uncertainty model) is
not the best in any of the error competitions and, therefore, its outputs were not used for
any impact model assessment. On the other hand, for a particular variable, the models are
assigned different ranks based on different error metrics. For example, for hydrological
variables, Had-RCA4 and Had-RACM commonly achieve the first rank in terms of RMSE
and MPI-RCA4, ECE-RACMr12 achieve the first rank for mean and standard deviation
errors. This begs the question of what the best subset of ensemble models is that could
somehow cover the error and uncertainty of outputs for use in the impact models’ sim-
ulations. To tackle this, this study introduces the following novel method explained in
Figure 4, making a fair balance between the error and uncertainty of outputs:

1. The subset members of the ensemble set are those that have error values lower than
the MMEM model (the highlighted models). For example, for hydrological variables,
the three subset error metrics are as follows:

Hy−ME =
{

IPS− RCA4, Had− RCA4, Had− RACM, MPI− RCA4, ECE−
RACM, ECE−RACMr12, Nor−HIRH

}
Hy− SDE =

{
CM5− RCA4, Had− RCA4, Had− RACM, MPI− RCA4, ECE−

RACM, ECE− RACMr12, ECE− RCA4, Nor−HIRH
}

Hy− RMSE = {Had− RCA4, Had− RACM, MPI− RCA4, Nor−HIRH}

2. The intersection between the three mentioned ensemble subset defines the CMs that
should be used for impact assessment.

MM− sHy = (Hy −ME) ∩ (Hy− SDE) ∩ (Hy− RMSE)
= {Had− RCA4, Had− RACM, MPI− RCA4, Nor−HIRH}

where MM− sHy represents the multi-model set in which the members pass the three
error metrics reliability tests. Finally, the output average of models in MM− sHy
makes a model, MMEM− sHy, which was used for the hydrology impact model.
Through this process, there is a balance between the uncertainty and error of the
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data. Repeating the process, the ensemble subset of the models for precipitation and
temperature impact assessments were:

MM− sP = {Had− RACM, ECE− RACM, ECE− RACMr12}

MM− sT =
{

IPS− RCA4, Had− RCA4, Had− RACM, ECE−HIRH, Nor−HIRH
}

In addition to using multi-model outputs for climate change impact modeling, a
single model’s outputs are used for this purpose to understand the uncertainty and error
shortcomings of CMs’ outputs well. As mentioned earlier, some studies used a single
model’s outputs, where the model is the best one in the error ranking. The current study
introduces a strict error filtration to find the best solo model, which is the intersection of all
three multi-model ensemble subsets, which is as follows:

Had− RACM =
(
MM− sHy

)
∩ (MM− sP) ∩ (MM− sT)

To conclude, the CMs involved in any type of climate change impact modeling, as
explained in Table 4, are summarized in Table 6. As observed, every type of impact model
(past and future simulations of data under climate change scenario 4.5 and comparison
between the results) is calculated two times, the first time by using multi-model outputs
(the current study’s methodology) and the second time by the classical approach, using
the best single model outputs. Through this activity, the signal and value uncertainties
of the reconstructed and projected data are well assessed. The signal uncertainty shows
the agreement of MM and SM about a trend (for example, increase, decrease, or neutral
change in temperature). The value uncertainty shows the difference in the value of temper-
ature change (for example, if catchment warming is certain, how much uncertainty is for
centigrade catchment warming, 1 ◦C, 2 ◦C, or other values).

Table 6. Ensemble subset of CMs for climate change impact modelling through two approaches of
multi-model (MM) and single model (SM).

Impact Model
ID MM SM

1 IPS− RCA4, Had− RCA4, Had− RACM,
ECE−HIRH, Nor−HIRH Had− RACM

2 Had− RACM, ECE− RACM, ECE− RACMr12 Had− RACM
3 Had− RACM, ECE− RACM, ECE− RACMr12 Had− RACM
4 Had− RACM, ECE− RACM, ECE− RACMr12 Had− RACM
5 Had− RACM, ECE− RACM, ECE− RACMr12 Had− RACM
6 Had− RACM, ECE− RACM, ECE− RACMr12 Had− RACM
7 Had− RCA4, Had− RACM, MPI− RCA4, Nor−HIRH Had− RACM
8 Had− RCA4, Had− RACM, MPI− RCA4, Nor−HIRH Had− RACM
9 Had− RCA4, Had− RACM, MPI− RCA4, Nor−HIRH Had− RACM
10 Had− RCA4, Had− RACM, MPI− RCA4, Nor−HIRH Had− RACM

3.2. Climate Models Ensemble Evaluation
3.2.1. Model Evaluation Based on Weighted Catchment Value

Figure 7 shows the performances of 14 RCMs in reproducing monthly cumulative
precipitation data over the 1971–2000 period against E-OBS data. As observed, overesti-
mation is obvious for all the RCMs’ performances, emphasizing the unreliability of RCMs’
outputs for use as inputs in the impact models. Hence, bias correction factors are needed
for applying RCMs to the impact models’ simulations. In general, the errors for the summer
months’ precipitation are lower than those related to the other seasons (Table S1). The
maximum and minimum total average errors for all months are related to ECE-HIRH and
Had-RACM with roughly 166% and 45%, respectively. The data generated from MMEM-
s_P have moderate monthly errors where it achieves the second-best rank model in terms
of the total average error values, 55%.
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Figure 7. Ensemble model for the under-study climate models’ performances in the reconstruction of
monthly cumulative precipitation data of Chiese catchment (for finding the exact error values, please
refer to Table S1).

Figure 8 demonstrates the ensemble uncertainty evaluation of different RCMs. The
model uncertainty in the outputs could originate from different sources, including GCM,
RCM, or the coupled interaction of GCM-RCM [43]. In this study, only the GCM-RCM
uncertainty was assessed, and the output deviation from the MMEM was considered to be
a criterion for assessing the models’ uncertainty performances [44]. In Figure 8, the precipi-
tation uncertainty for the summer months is lower than that for the other months. In terms
of the total monthly average deviation, the highest and lowest uncertainties are related
to ECE-HIRH and MMEM-s_T, with approximately 162 (mm) and 22 (mm), respectively
(Table S2). Had-RACM, the lowest error model, shows roughly high uncertainty and more
than MMEM-s_P, meaning that choosing the lowest error model does not always guarantee
the lowest uncertainty.

Figure 8. Under study climate models’ outputs deviation from grand ensemble mean (MMEM) for
the reconstruction of monthly cumulative precipitation of the Chiese catchment (for the exact values
of uncertainty, please refer to Table S2).
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In Figures 9 and 10, underestimation is well observed among all RCMs and for all
monthly temperatures, except for CM5-RCA4, which has the highest total average error
value of 4.9 ◦C (Table S3). In this regard, Nor-HIRH performs the best, with a total average
error value of 1.12 ◦C, but it is not the best in terms of uncertainty, with a total average
deviation of 2.80 ◦C (Table S4). Regarding uncertainty, the MMEM model is the best;
however, it has quite a high error of 3.11 ◦C. MMEM-s_T strikes a good balance between
the error and uncertainty values, with 2.29 and 0.99 ◦C, respectively.

Figure 9. Ensemble model for the under-study climate models’ performances in the reconstruction of
monthly average temperature data of Chiese catchment (for finding the exact error values, please
refer to Table S3).

Figure 10. Under study climate models’ output deviation from grand ensemble mean (MMEM) for
the reconstruction of the monthly average temperature of Chiese catchment (for the exact values of
uncertainty, please refer to Table S4).
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In general, comparing uncertainty and error performances for precipitation and tem-
perature properties shows that RCMs perform better when reconstructing temperature
data than precipitation ones. Moreover, the subset ensemble selection approach, through a
fair comparison of the two shortcomings of RCMs, can result in models (i.e., MMEM-s_T,
MMEM-s_P, and MMEM-s_Hy) that have a good balance in error and uncertainty to avoid
biased RCM selection and, therefore, highly inaccurate impact model results.

3.2.2. Model Evaluation Based on Spatial Analysis

Figure 11 demonstrates the spatial variability of the seasonal cumulative precipitation
values for winter season including the months of December, January, and February (DJF);
spring season including the months of March, April, and May (MAM); summer season
including the months of June, July, and August (JJA); and autumn including the months of
September, October, and November (SON). In this regard, every fictitious station’s value
is calculated and attributed to the associated Thiessen polygon. As observed, comparing
the spatial distribution of precipitation from climate models with the one from E-OBS
proves overestimation, which agrees with that shown for the catchment values in Figure 7.
Among the climate models, the spatial variability of precipitation is higher for ECE-HIRH,
CM5-RCA4, and Nor-HIRH than other models, where the fictitious stations with high
elevation, particularly fictitious station 9, show a high amount of cumulative precipitation.
Even though they achieved a low rank based on the dimensionless error assessment
of a historical precipitation simulation (Table 5), they performed well when simulating
the natural processes of air parcel cooling, condensing, and rain. This implies the poor
performance of E-OBS when it comes to spatial variability analysis and the need for
improvement of the observed data.

Figure 12 manifests the spatial variability of the seasonal average temperature esti-
mated by the different models. As shown, spatial overestimation is clear in the seasonal
temperature simulation performances of climate models. The spatial variability in the
winter temperature is higher than in other seasons. As expected, the summer temperature
is the highest, and all 12 models show a good correlation between the fictious stations’
elevations and associated temperatures such that moving from south to the north (lowest to
the highest elevation) refers to a decrease in the seasonal temperature. Looking at the models,
Nor-HIRH has the best-fitted temperature spatial distribution with the E-OBS one, while
CM5-RCA4 is the poorest one, which is in a good agreement with their ranks in Table 5.

Figure 11. Cont.
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Figure 11. Ensemble model for analyzing spatial variability of 12 models, 10 RCMs, E-OBS, and
MMEM models for reconstructing of historical, 1971–2000, seasonal cumulative precipitation values.
The red and pink nodes in the figures refer to the fictitious stations of climate and E-OBS models.

Figure 12. Cont.
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Figure 12. Ensemble model for analyzing spatial variability of 12 models, 10 RCMs, E-OBS, and
MMEM models for reconstruction of historical, 1971–2000, seasonal average temperature values. The
red and pink nodes in the figures refer to the fictitious stations of climate and E-OBS models.

3.3. Impact Models’ Results
3.3.1. Temperature and Precipitation-Based Impact Models

Figure 13 illustrates the variation in the weighted average Chiese catchment pre-
cipitation and temperature variables estimated over the two decades in the historical
(1991–2000) and future (2071–2080) periods, where the results show how much the SM and
MM approaches could make differences in the projection of data.

Overall, both SM and MM are in agreement concerning Chiese catchment warming
(signal uncertainty is low as both models indicate temperature increase in the catchment),
whereas there is not a clear trend for the precipitation values.

Looking at the details, regarding temperature, the coldest (December) and warmest
(July) months remain the same over time for SM, while in the MM approach, the coldest
months for the 1990s and 2070s are January and February, with about −0.65 ◦C and 1.93 ◦C,
respectively, and the warmest month is August for both the past and future of the Chiese
catchment. In general, the value uncertainty in projecting summer temperature data is
lower than in winter ones. For example, the highest deviations between SM and MM are
4.47 ◦C and 6. 72 ◦C for the January months of the 1990s and 2070s, respectively, and
the lowest deviations are 0.20 ◦C and 1.04 ◦C for the August months of the 1990s and
1970s, respectively (Table S5). To sum up, SM and MM projections for the average yearly
increase in the temperature are about 3.69 ◦C and 2.41 ◦C, respectively, meaning 1.25 ◦C
value uncertainty.

In terms of monthly precipitation for the Chiese catchment, there is not a clear signal
by SM and MM. However, comparing the performance of SM and MM for historical
reconstruction and future projection of precipitation data shows higher value uncertainty
for the 2070s than the 1990s. In this regard, the highest and lowest deviations are related
to the December of the 1990s and the January of the 2070s, with 6.35 mm and 62.48 mm,
respectively (Table S6).
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Figure 13. Temperature and precipitation changes in the Chiese catchment under Scenario 4.5 through
the single-model (SM) and multi-model (MM) approaches.

The projection of the precipitation characteristics was investigated for both historical
and future data in Figure 14, showing the Gumbel cumulative frequency distribution
(CFD) of three characteristics of rainfall events: depth, duration, and intensity for the
1990s and 2070s obtained using the SM and MM approaches. As observed, while SM
points out that the future rainfall events would be with shorter duration, MM results show
roughly the same duration for future and historical Chiese rainfall events. Hence, the
signal and value uncertainties are high in this case. Regarding the depth, there is not a
significant difference in the depths of the rainfall event behavior between the future and
historical climate of Chiese for both SM and MM (the depth signal uncertainty is low,
but the depth values uncertainty is high). At some knee points, there are considerable
differences between the intensity of future and historical rainfall events. The same signals
point out that the precipitation could fall with higher intensities in the future, particularly
for the extreme ones. Assessing the value uncertainty in the results demonstrates a more
dramatic deviation for duration property between SM and MM than depth and intensity
properties. The interesting point is at the limit points of intensity and depth graphs where
value and signal uncertainties move towards zero.
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Figure 14. The rainfall event characteristics of Chiese catchment, duration, depth, and intensity
change under Scenario 4.5 obtained by single and multi-model approaches.

3.3.2. Hydrological Impact Models

Table 7 shows and compares the important water balance components at Gavardo
station for the four simulations calculated through TOPKAPI. As can be seen, the decadal
precipitation values for the future period (2071–2080) simulations are higher than the
corresponding ones for the historical period (1991–2000) simulation. However, this does
not refer to a considerable difference, and therefore, it is expected that the Chiese catchment
will not face high variations in the total average yearly rainfall depth. Moreover, the
precipitation deviations between SM and MM show higher uncertainty for the 2070s
than the 1990s, with around 800 mm and 500 mm, respectively (signal certainty and
values uncertainty).

As regards the percolation values, both SM and MM confirm a negligible change and
deviation for decadal absolute and relative balances. The evapotranspiration values grow
due to the catchment warming, and MM and SM show the same signal, that is, an increase
in the relative decadal balance, about 2%, where value uncertainty is about 6%.
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Table 7. Changes in the Hydrologic Water Balance components of Chiese catchment under Scenario
4.5 over the historical and future periods, obtained by single-model and multi-model approaches.

Simulation
Name

Precipitation
(mm) Discharge Percolation Evapotranspiration

Balance
(mm) Balance (%) Balance

(mm) Balance (%) Balance
(mm) Balance (%)

90s (SM) 11,729.29 9130.33 73.03% 554.67 4.44% 2619.13 20.95%
90s (MM) 12,294.38 8720.95 67.19% 564.72 4.35% 3465.68 26.7%
70s (SM) 12,190.20 9512.52 72.53% 541.21 4.13% 2894.41 22.07%
70s (MM) 12,953.37 8900.18 66.00% 568.08 4.22% 3862.16 28.64%

For the assessment of discharge variations, Table 7 shows an increase in the decadal
discharge values for both SM and MM. However, the value uncertainties in the relative bal-
ance are similar to those related to the evapotranspiration component and higher than the
percolation component by about 6%. Figure 15 compares the CFD of the yearly maximum
discharge for the historical and future decades. While the results from SM are appreciable
but not exorbitant increases for the maximum discharge values with 0.3 < CFD < 0.8, this is
dramatically amplified for anomalies (values with CFD > 0.8). In this regard, MM does not
project a clear trend for change in the maximum discharge of the Chiese catchment. With
respect to the value uncertainty, in general, the deviation between SM and MM is higher
for projected data than for past reconstruction. In this regard, the highest amount of value
uncertainty is observed for extreme events in the future, calling for flood management and
mitigation actions.

Figure 15. The yearly maximum discharge CFD for Chiese catchment over the historical and future
periods obtained by single-model and multi-model approaches.

4. Discussion and Conclusions

Climate models’ performance reliability is under debate in the literature. In this con-
text, the current study attempted to evaluate 10 ensemble EURO-CORDEX regional climate
models plus 4 different combined climate models for solving a real project concerning
the water availability of the River Chiese catchment. The evaluations were carried out
considering the two common shortcomings of the models, which are error and uncertainty.
For this purpose, together with the spatial analysis of the climate models’ outputs over the
catchment, the weighted catchment value was calculated and used for different variables.
The spatial analysis showed that for the small-scale catchments, the averaged catchment
value could be considered an appropriate surrogate of the whole catchment climate for
the evaluation and impact model assessments and calculations. High overestimation
for the monthly cumulative precipitation was observed for all the under-RCMs’ outputs,
whereas underestimation was observed among all the RCMs, except for CM5-RCA4, for
the catchment average monthly temperature. Moreover, error and uncertainty were lower
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for the summer months than for the other seasons. In this regard, some dramatic error
values were calculated, such as 312% for February precipitation obtained by ECE-HIRH.
To address this weakness of RCMs, some studies introduced the multi-model ensemble
mean (MMEM) as a reliable output for climate change assessment. However, our study
showed a poor performance of MMEM on the river Chiese, while it nevertheless covers
model-based uncertainty. To tackle this challenge, an algorithm was introduced, based
on some simple set theories and three different error indices, to make some subsets of
RCM ensemble able to balance error and uncertainty for every particular impact model
simulation and assessment.

To apply climate models to project climatic data and assess the climate change in
the catchment, some authors in the literature relied on the outputs of one climate model,
which is usually the single best-performing model (SM). Yet, many criticized this approach
and proposed an ensemble approach using multi-model (MM) outputs for covering the
uncertainties in the reconstruction and projection of climatic data. The current study
showed and compared the application of both approaches for assessing the climate change
impacts on some hydro-climatological variables and uncertainties in this regard. The
uncertainties were assessed in two terms, which were signal and value uncertainties.
Signal uncertainty showed the agreement of models for the variables’ trends in the Chiese
catchment, while value uncertainty demonstrated the differences in the measurements.

As a result of this, the impacts of climate change under scenario 4.5 were assessed
between 1991–2000 and 2071–2080 for monthly precipitation, temperature, some rainfall
features, and hydrological variables. Catchment warming is an obvious and certain issue
(both SM and MM showed the same signal, which was temperature increase), while the pre-
cipitation signal is unclear and uncertain. The value and signal uncertainties for projecting
summer temperature were lower than the winter temperature of the Chiese catchment.

Regarding rainfall event characteristics, SM predicts future rainfall events with higher
intensities and lower durations where the depth remains the same. Whereas, MM approxi-
mately projects the same values for future catchment rainfall duration, depth, and intensity,
meaning signal certainty for depth and signal uncertainty for intensity and duration fea-
tures of rainfalls. The highest value of uncertainty is for the duration of rainfalls, while
the uncertainty at the extreme points of depth and intensity features decreases. Regarding
the hydrological variables, there is a certain result about rising evapotranspiration in the
catchment, while the uncertainty in the decadal relative balance percolation of the catch-
ment is negligible. There is an increase in the catchment discharge where a dramatic value
uncertainty of about 350 m3/s is for the yearly projected maximum discharge.

To sum up, in agreement with previous researchers in the field, the current paper
showed the unreliability of climate models’ outputs due to the high errors and uncertainty
found in the results. However, an approach was introduced to choose the subset of
ensemble models to moderate the shortcomings of RCMs’ outputs and to make the tradeoff
between error and uncertainty of outputs when they conflict with each other. Having said
that, the current study used some important simplifying assumptions (different uncertainty
sources and human climate forcing interventions, vegetation, land use, and soil) that could
have had appreciable impacts on the final results. Moreover, the under-study climate
models were not as comprehensive as having all scenario simulations such as Scenario 2.6.
The focus of future work will be on a comprehensive assessment of the vulnerability of the
Chiese catchment against climate change [45], where more human climate interventions,
greenhouse gas scenarios, and fewer assumptions will be considered in the evaluation of
climate change impact models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14233967/s1. Table S1: The RCMs’ error values (%) for weighted
Chiese catchment cumulative precipitation calculated averagely for every month over 1971–2000
(error = |XE−OBS−XRCM |)

XE−OBS
); Table S2: The RCMs’ deviation values (mm), uncertainty, for weighted

Chiese catchment cumulative precipitation calculated averagely for every month over 1971–2000,
(deviation = |XMMEM − XRCM|); Table S3: The RCMs’ error values (◦C) for weighted Chiese catch-

https://www.mdpi.com/article/10.3390/w14233967/s1
https://www.mdpi.com/article/10.3390/w14233967/s1
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ment temperature calculated averagely for every month over 1971–2000, (error = |XE−OBS − XRCM|);
Table S4: The RCMs’ deviation values (◦C), uncertainty, for weighted Chiese catchment cumulative
temperature calculated averagely for every month over 1971–2000, (deviation = |XMMEM − XRCM|);
Table S5: The monthly temperature values (◦C) for the historic (1991–200) and future periods
(1971–2080, Scenario 4.5) obtained by the single model (SM) and multi model (MM) approaches as well
as deviation values (◦C), uncertainty, for every month (deviation = |XMM − XSM|),
∆SM =

∣∣∣XSM (90s) − XSM (70s)

∣∣∣, ∆MM =
∣∣∣XMM (90s) − XMM (70s)

∣∣∣; Table S6: The monthly precipi-
tation values (mm) for the historic (1991–200) and future periods (1971–2080, Scenario 4.5) obtained
by the single model (SM) and multi model (MM) approaches as well as deviation values (mm),
uncertainty, for every month (deviation = |XMM − XSM|); Figure S1: Conceptual layout of TOPKAPI;
Figure S2: Water network and DEM of the Chiese catchment; Figure S3: Map of hierarchy of the
channel network (the darker color corresponds to a higher degree in the hierarchy). The star sign
represents the hydrometer of Gavardo station; Figure S4: Map of soil kind; every color is related to a
code of a particular soil (shown in the legend) representing different parameters shown in Figure S5;
Figure S5: Soil parameters used for the calibration including horizontal permeability at saturation
(m/s), saturated water content, residual water content, soil depth (m), horizontal non-linear reservoir
exponent, vertical permeability at saturation (m/s), vertical non-linear reservoir exponent; Figure S6:
Output of TOPKAPI for the Chiese catchment. The first graph above shows the fit of simulated to
observed water discharge at Gavardo (blue and red graphs indicate the observed and simulated
discharges respectively). The other graphs report the other processes of the hydrological cycle,
including percolation to groundwaters; Figure S7: Calibrated data in Initial Condition Window of
user interface TOPKAPI for the Chiese catchment; Figure S8: Calibrated data in Land Use Window of
user interface TOPKAPI for the Chiese catchment; Figure S9: Calibrated data in Temperature Window
of user interface TOPKAPI for the Chiese catchment.
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