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1. Introduction: bibliography and state-of-the-art of snow models
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2. The model: general aspects

My initial proposal for the model is based on three key
points:

Discontinuous

o , snow in nature
1. the general framework of the elastic-visco-plastic

model proposed by Cresseri & Jommi (2005)

2. the overstress theory of Perzyna (1963),
accounting for irrecoverable strains even inside the
yield locus

3. A new formulation for the yield surface

~ Initial hypotheses and assumptions: small strains,
continuity, homogeneity, and isotropy Continuum
model
“+ The temperature is constant during the test time
(purely mechanical model)




2. The model: yield surface (i)

The model uses an improved yield surface that was obtained starting from the Mod. Cam Clay for
snow (Cresseri & Jommi, 2005) and the Panteghini & Lagioia (2017) methodology to deform the
yield surface
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The new surface accounts for the additional strength in compression (p,,,) and tension (p;) due to
sintering




2. The model: yield surface (ii)

The meridian section of the yield surface is described by the following function:

1
f(p,q) =— {qz — 4a*M?*(po + pm)® ﬁ}

2
atm sz

® =Triaxial data from
Scapozza & Bartelt

2003
The function describes a surface which is simply 50 . ( . )
convex and smooth at any point of the p-q space M= 101
. o “f a =071
Experimental findings (e.g., Scapozza & Bartelt, _
. . . /-\30_ p0—65kPa-
2003) suggest that a asymmetric yield surface is 5 b, = 5 kPa
best suited for snow < o0l ‘ |
The surface can potentially adapt to various 10r
snow conditions (e.g. different grain types, of
complex stress-paths, etc.) a0 50 a0 o0 0 20
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2. The model: yield surface (iii

Effect of the shape parameter M Effect of the shape parameter a 3D view in the Haigh-Westergaard
on the f = 0 curve on the f = 0 curve stress space
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2. The model: visco-plastic strain potential

The irreversible strain potential has a mathematical expression
quite similar to the yield function
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g(P; Q) = q2 - 4d2M2ng 2
dﬂqz

¢g1 = (a — 1)(p - pgt)(p + pgo)(pgt + apgo)

(.bgz - _P(Pgo _ pgt) + prgoa + pgo[_(a - 2)pgt + Pgoa]

g(p,q) = 0 describes a curve passing always through the
stress point
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2. The model: flow rule

A non-associative flow rule of the Perzyna type is considered to take into account the presence of viscous

effects even inside the elastic region (according to Cresseri et al., 2010)

p (kPa)

: dg 1
i = 7 b(f) == ——
Component Aspect Description
Fluidity parameter __YVp*+q? Distance of the stress point
(always positive) V=775 o from the origin

Viscous nucleus (always
positive)

Normal unit vector

d(f)=e*,a>0

dg 1
90 |Vg]|

Component of the
deformation velocity,
function of the overstress

direction of the
irreversible strains




2. The model: hardening and sintering laws

- Isotropic hardening rule typical of the Mod. Cam ~ Sintering law for snow by Cresseri et al. (2010)
Clay with the addition of the hardening parameter ¢ describing the current amout of sintering S
: v irr & ‘ Cirr) 2 ¥ 2
Po = —§ 5 Potv S =So(ts,r,T)|1 —tanh | C j (elrm)” + (eirr )
0
pos /
Y
So = amount of Degradation term
| sintering in the
= The rate of variation of p,, is expressed as: unstressed snow p 4
Pm = 7TmbmowcS‘ fin.g) =0
m,, = constitutive parameter
bmax = Maximum ratio between the
bonding necks and the radius of the
particles =2 Pyt P, P, P+ P, P,
— ~€ >
r Sintering  Degradation
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2. The model: parameters

The model is based on 13 parameters that can be obtained from laboratory tests, observation
of the snow grains, literature data, etc.

Parameters Type Test for validation
K, A G Elastic Triaxial tests, shear tests
. i
M,ay, Xg Plastic (yield locus) Shear tests, Compression 1D tests, literature
data
b,a Viscous Compression tests, triaxial tests, relaxation
’ and creep tests, literature data
& Hardening Literature data, snow grain observation
C, W Sintering Sintering tests, literature data
For round snow (hard slab): For faceted snow (weak layer):

X=Xx4=005+01
w = 0.05
=1




3. Numerical implementation

The model was time-integrated
following a fully implicit
backward Euler method
scheme
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3. Numerical implementation: the 10D discretized system

1 dg
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3. Numerical implementation: some results

Volumetric creep (Desrues et al., 1980)

0.4 71 Initial conditions
m Desrues et al. (1980) (p = -5 kPa)
I o Desrues et al. (1980) (p = -13 kPa) Test pO (kPa)  Po (kPa) o () T (°C) 1o (mm)
0.35 —a—FE simulation, Test_01 (p = -5 kPa)
—e—FE simulation, Test 02 (p = -13 kPa) Test_01 0.0 2 4.58 - 0.2
03+ Test_02 0.0 2 4.58 5 0.2
0.25
— Model parameters
L 02 .
w
Test  A() k() (kPa) Y()  al) my()
0.15 Test_01
& 0.35 0.02 2114 1.2e-4 16 40
0.1 Test_02
8 Test xG() €y M) a() &) w()
0.05 11 Test_01
& 0.05 0.01 2.88 0.475 1 0.05
0 Test_02

0 200 400 600 800 1000
t(s)




3. Numerical implementation: some results

Volumetric compression (Meschke et al., 1996)
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p (kPa)

Initial conditions

Test p° (kPa)  po (kPa) vy (-) T (°C) 7o (mm)
Test_03 60.0 77 2.28 5 0.2
Model parameters
Tt A() k() & oy  al@)  ml)
(kPa) m
Test 03 0.35 0.02 12000 2.0e-7 16 40
Test x () c() M() af() () w (-)
Test 03 005 001 2.88 0475 1 0.05
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3. Numerical implementation: some results

Triaxial compression — long time (von Moos et al., 2003)
70 1

= von Moos et al. (2003)
— FE simulation (Test_04)

T

Axial stress (kPa)
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50
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Time (s)

Previsious FE simulation — only
qualitative (Cresseri, 2005)
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= 40
% Initial conditions
S 30 Test p° (kPa)  po (kPa) vy (-) T (°C) 7o (mm)
Test_04 0.0 25 2.90 12 0.118
20 Model parameters
G
Test A() k() (kPa) Y () a() my()
10 Test 04 035 002 8000 4.2e6 035 40
0 1 | Test x () c() M() af() () w()
1.5 2 Test 04 0.05 0.01 2.88 0.475 1 0.05
X 104




3. Numerical implementation: some results

Triaxial compression — short time (von Moos et al., 2003)

200
= von Moos et al. (2003)
180 F — FE simulation (Test_05)
Initial conditions
160 [
Test p° (kPa)  pg (kPa) Vo (-) T (°C) 7o (mm)

140 | Test_05 5.0 100 2.44 -12 0.118
120

Model parameters

o, (kPa)
=
S

G
80 r Test  A() k() (kPa) Y() a() my()
60 - Test_05 0.35 0.02 20000 2.0e-5 0.35 40
40 Test x()  C() M() a() §() w()
. . . A7 1 .
20 Test_05 0.05 0.01 2.88 0.475 0.05
0 1 1 1 1 1
0 1000 2000 3000 4000 5000
t(s)
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4. Conclusions

The model is a generalization and an improvement of an existing snow model (Cresseri & Jommi, 2005)
The model reproduces satisfactorily different features of the mechanical behavior of snow

The model is in good agreement (especially from a quantitative point of view) with many lab findings
The model can reproduce some tests better than existing snow models

Possible further developments:

i. Consideration of finite strains

ii. Definition of specific testing procedures for the identification of model parameters

iii. Execution of testing campaigns to extend the available data for parameter estimation

18



4 %! *Y, Politecnico

A ¥
=

% di Torino

T
TS Department
‘:' of Structural, Geotechnical
[

and Building Engineering

Thank you for your kind attention!

gianmarco.vallero@polito.it



2. The model: convexity (i)

Convexity is a fundamental requirement for the yield surface to guarantee the stability of the model with
respect to arbitrary stress and strain paths

A scalar-valued function f (o, p.) of the stress tensor g €
D, where D is a convex subset of R®, and of the hidden

Convex set variable p. € R*, is quasi-convex if all its lower contour
sets:
Ly (fo) = {(o € D,p. € RM)|f(0,p.) < fo)}
Non-convex : : :
\ set are convex for any f, € R. This relationship needs to be

satisfied for any p,

20



2. The model: convexity (ii)

Panteghini & Lagioia (2018) describe two different types
of convexity

1. Simple convexity indicates that only the zero level set
of f = 0 is convex (i.e., the yield curve itself) while
convexity is lost for all or some values f = f, # 0

2. Full convexity indicates that the yield function f is a
quasi-convex function, so that any level set f = f, is
convex

The two authors proposed the convexification technique
to pass from simple to full convexity and to obtain also
linear homothety

N

foap)=f,=0

\
\
\
\

<Y

<Y
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2. The model: convexity (iii)

p/p0 ()

M=1,a=0.5,p, =p;

1 f(p,q) value

Here, f(p, q) is a simply convex function;
therefore, for “high” values f > 0, the convexity
could be lost

In case of Perzyna's visco-plasticity this could
be a problem even if, for usual snow
applications, f never reaches values higher
than 2

The convexification technique is difficult to
implement

An expression similar to f is used for the visco-
plastic strain potential g together with a non-
associative flow rule

g is simply-convex as well, and its definition
ensures that g is null for any stress state (p, q)
and the direction of the visco-plastic strains is
not affected by the simple convexity
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2. The model: convexity (iv) /()\
F(p,q) values

In literature exist different surface that can change their 200

A T

//\ ' ‘——300
shape but can have some problems 200

S

100

-0
= -100

q”(kPa)
o

-200
-300
-400
-500

For instance, the Bigoni and Piccolroaz (2004) surface is
defined only in a reduced part of the p-q plane e

-400 | ‘ : g
-400 -200 0 200 400
p (kPa)

As a possible improvement, a fully convex yield surface could be introduced by means of the
convexification process described by Panteghini & Lagioia (2017)

The fully convex surface maintains its convexity when f > 0
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