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1. Introduction
Permian mafic volcanic rocks occurring in southern terrains of Scotland (United Kingdom; Fig. 1a) are rich in peridotitic xenoliths.

Sulfide abundances in these xenoliths provide insight into the metal migration through the Subcontinental Lithospheric Mantle

(SCLM) beneath this area. Peridotites from the Ruddon’s Point (Fife, Midland Valley Terrane) xenolith suite form four textural

groups: (1) porphyroclastic and (2) protogranular lherzolites, (3) equigranular wehrlites and (4) lherzolites transitional between

protogranular and equigranular peridotites (Fig. 1b). The SCLM beneath southern Scotland was affected by reaction with an

alkaline melt resulting in clinopyroxene crystallization (wehrlitization) and decrease of Fo in olivine from groups (1, 2) through

group (3) to (4) (Fig. 1c; Matusiak-Małek et al., 2022).

2. Sulfide petrography
The sulfides occurring in the peridotites form oval, elongated or irregular grains (Fig. 2a) enclosed (predominantly occuring in

protogranular lherzolites) in pyroxenes and olivine, or interstitial (dominating in the rest of lithologies) between these phases. The

abundance of sulfides increases from the transitional lherzolites, through equigranular and porphyroclastic to protogranular

lherzolites (Fig. 2b). Sulfide minerals present in all textural groups are pentlandite (Pn; [Ni,Fe]9S8) and chalcopyrite (Ccp; CuFeS2).

Ccp occurs on the edges or forms perpendicular exsolutions in Pn-grains (Fig. 2a). Pyrrhotite (Po; Fe1-xS) occurs scarcely, but

protogranular and transitional lherzolites contain minor amounts. Porphyroclastic lherzolites occasionally contain millerite (Mlr;

NiS) and covellite (Cv; CuS) (Fig. 2a). The sulfides from the equigranular and protogranular peridotites are more enriched in Cu-,

and depleted in Ni-phases in comparison to sulfides from the porphyroclastic and transitional peridotites (Fig. 2c).

Fig. 2 (a) Microphotographs of sulfide grains, reflected light, (b) sulfide abundances, with marked weathering (shaded areas) and mean for every lithology (dashed lines), (c) the averaged proportion

of major sulfide phases represented by pentlandite, chalcopyrite and pyrrhotite in porphyroclastic, protogranular, equigranular and transitional peridotites from Ruddon’s Point xenolith suite.
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3. Sulfide chemistry
The range of Cu/(Cu+Fe) values is equivalent across all textural types (Fig. 3a), whereas Ni/(Ni+Fe) in pentlandite is equal only in

transitional and equigranular peridotites in contrast to porphyroclastic and protogranular ones (Fig. 3b). The concentration of

major and trace elements were analysed in situ for sulfide grains from protogranular and transitional lherzolites. These showed

differences in abundances of Ni and Cu (Fig. 3c), Co and Zn (Fig. 3d), total PGE (Fig. 3e) and (Re/Os)N values (Fig. 3f).

Fig 3. The distribution of (a) Cu/(Cu+Fe) in chalcopyrite (Ccp) and covellite (Cov) and of (b) Ni/(Ni+Fe) in pentlandite (Pn) and millerite (Mlr) in sulfide grains between porphyroclastic, protogranular,

equigranular and transitional peridotites. The concentrations of (c) Ni vs Cu, (d) Co vs Zn, (e) Cu vs total PGE and (f) (Re/Os)N vs Cu in bulk sulfide grains from protogranular and transitional peridotites.

The plot (c) is presented in linear scale, whereas the plots (d–f) are in logarythmic scale. The Re/Os ratio is normalized to Primitive Mantle (McDonough and Sun, 1995).
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4. Conclusions
• Sulfides from more primitive protogranular lherzolites have features characteristic for melt-

metasomatism (highest abundances, Cu-Zn enrichment, (Re/Os)N mostly above 1) in contrast to sulfide

from melt-metasomatized transitional peridotites (much lower abundances, Cu-Zn depletion, (Re/Os)N

mostly below 1), which could be interpreted as residual sulfides after partial melting (e.g., Alard et al.,

2000; Lorand and Alard, 2001; Saunders et al., 2015; Hughes et al., 2017; Patkó et al., 2021).

• Therefore, the evolution of sulfides is contrary to the evolution recorded in silicate and oxide mineral

chemistry. Sulfides in the protoganular lherzolites appear to have a metasomatic origin, whereas

sulfides in the transitional transitional lherzolites appear to be restitic.

• The presence of millerite and covellite in sulfides from porphyroclastic lherzolites indicates

hydrothermal, post-volcanic activity, affecting the xenoliths after the exhumation to the surface by

basaltic lavas (Warner, 2013).
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Fig 1. (a) Terrane map of Scotland, highlighting Ruddon’s Point xenolith locality (red star) and previous studies of xenoliths from Scotland (Hughes et al., 2015, modified), (b) Thick sections of major

lithologies occuring in Ruddon’s Point xenolithic suite, (c) the #Cr vs Fo in olivine diagram of porphyroclastic and protogranular lherzolites, equigranular wehrlites and transitional lherzolites from

Ruddon’s Point xenolith suite. Notes: OSMA – Olivine-Spinel Mantle Array
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