
This work was partly funded by the Smart Exploration project. Smart Exploration has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 775971.

The computations were enabled by resources provided by the National

Academic Infrastructure for Supercomputing in Sweden (NAISS) at

UPPMAX (SNIC 2022/5-530) partially funded by the Swedish Research Council (2022-06725).

EGU23-5006 @EMRP2.12

c©Po-Cheng Tang

linkedin.com/in/paula-rulff

@emgeopaula

0 1000 2000 3000 4000 5000
distance to source (m)

10 0

10 1

10 2

10 3

10 4

10 5

w
 (

r)

r
d
 = 500 m

r
d
 = 1000 m

r
d
 = 1500 m

r
d
 = 2000 m

Figure 9: weights wi(r)

.

Counteracting sensitivity accumulation near source and receiver locations
in 3-D inversion of controlled-source electromagnetic data
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. 1. Introduction & Objectives
• synthetic controlled-source electromagnetic (CSEM) inversion study with a

single transmitter and a distant inclined conductive anomaly

• 3-D CSEM finite-element approximations [1,2] combined with non-linear con-
jugate gradient (NLCG) inversion [3] implemented in inversion framework [4]

⇒ mitigate the influence of strong sensitivities
near source and receivers

⇒ guide the inversion to a reliable model via the
model regularisation term

How can we prevent resistivity artefacts close to the source location?

2. Study

.
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Figure 1: (a) Top view on measurement set-up with loca-
tions of the block anomaly. (b) Vertical section through the inner
model region displaying the true model resistivities.

Data
• 11 frequencies (102 - 104 Hz)

• Zxy & Zyx with 2 % noise

• Zxx & Zyy with abs. error of Zxy & Zyx

.

Inversion settings
• 30 iterations

• 10 000 Ωm start model

• sources & receivers in thin
fixed layer

• 67 663 free model param-
eters

Tests
• preconditioning

• impedance components

• regularisation weights

.
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Figure 2: Sections through the inner model region displaying
gradients at 102 Hz of Zxy & Zyx data. The location of the con-
ductive anomaly is outlined in white. Areas of high sensitivities
near source and receivers are outlined in pink. Mesh: tetgen [5]

.3. Results
Zxy & Zyx input data
.
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Figure 3: (a) 3-D view and (b,c) vertical sections through
the resistivity model obtained with preconditioned NLCG inver-
sion and Zxy & Zyx input data. ρ-threshold in (a): 1 000 Ωm.
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Full Z input data
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Figure 4: (a) 3-D view and (b,c) vertical sections through
the resistivity model obtained with preconditioned NLCG inver-
sion and all Z components as input data.
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Zxy & Zyx input data
with distance-to-source weights
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Figure 5: (a) 3-D view and (b,c) vertical sections through
the resistivity model obtained with preconditioned NLCG inver-
sion and distance-to-source weights (rd = 750 m)..

Analysis
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Figure 6: Convergence analysis:
(a) RMS and (b) objective function versus
iteration number.
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Figure 7: Data-fit S1
with distance-to-source weights.
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Figure 8: Data-fit S14
with distance-to-source weights.
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Take-aways
⇒ It is difficult to remove the source signature

in the resistivity model, but possible to re-
duce artefacts by increasing the smoothing
in the source region.

⇒ Diagonal components of the impedance
tensor add information, but are more dif-
ficult to fit than off-diagonal components.

⇒ Do not place the transmitter above known
resistivity anomalies!

.

CSEM Impedance Tensor Z
• "Controlled-source tensor magnetotel-

lurics" [9,10]

• impedance tensor Z defined via hori-
zontal electric and magnetic fields

• two independent source polarisations
(subscripts 1 & 2)

• source current does not need to be
known

Zxx =
Ex1Hy2 − Ex2Hy1

Hx1Hy2 −Hx2Hy1
, Zxy =

Ex2Hx1 − Ex1Hx2

Hx1Hy2 −Hx2Hy1
,

Zyx =
Ey1Hy2 − Ey2Hy1

Hx1Hy2 −Hx2Hy1
, Zyy =

Ey2Hx1 − Ey1Hx2

Hx1Hy2 −Hx2Hy1
.
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4. Methods
. Distance-to-source (r) weights

• weights wi(r) in the model regularisation term

• increase the smoothing in model regions, where sensitivi-
ties are high, but no variations in subsurface resistivity are
expected (at source location)

wi(r) =

{(
ri

rd

)−3
for ri ≤ rd;

1 for ri > rd.

• for first-order difference regularisation [7] and gradient ap-
proximation via the weighted sum of first differences [8]

. Preconditioning
• approximates the Hessian of the objective function Φ

• distributes the model update mk+1 more uniformly in the
domain due to better search directions uk

Preconditioner suggested in [6] with step size αk:

Mk+1 = Mk +
∇Φ(mk)∇Φ(mk)T

∇Φ(mk)T uk

+
vkvT

k

αkvT
k

uk

• diagonal preconditioner updated at each iteration k

• M0 is set to the identity matrix, vk = ∇Φ(mk+1)−∇Φ(mk)

.
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