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A B S T R A C T   

Pakistan has experienced seasonal changes of streamflow, causing a lack of available water resources for agri-
culture. However, understanding of future seasonal changes of streamflow over Pakistan remains limited. This 
study assessed the past and future changes in streamflow timing along the four major rivers of Pakistan (Upper 
Indus, Kabul, Jhelum, and Chenab River basins), using observational data and bias-corrected hydrological 
projections. Firstly, the VIC-river routing model was simulated forced by simulated daily surface and base runoff 
data from six CORDEX-South Asia regional climate models (1962–2099). Secondly, the minimum and seasonality 
bias in simulated daily streamflow data were corrected based on observational records. To quantify seasonal 
changes of the hydrologic regime, half of annual cumulative streamflows (HCSs) and center-of-volume dates 
(CVDs) were computed from observed and bias-corrected simulated streamflow data. Over 1962–2019, obser-
vational records showed a significant decreasing trend in CVD (that is, an earlier onset of the wet season) by a 
range between − 4.5 and − 12.6 days across the three river basins, except for Chenab River basin. Bias-corrected 
hydrologic projections showed decreased CVD across the four study river basins by − 4.2 to − 6.3 days during the 
record period (1962–2019). The decreased CVDs ranges from − 5 to − 20 days in the near future (the 2050–2059 
average) and − 11 days to − 37 days in the far future (the 2090–2099 average). This study reported diverse 
hydrologic responses to a similar magnitude of near-surface temperature in Pakistan, highlighting a need to 
develop basin-specific water resources mamangement and policies for climate change adaptation.   

1. Introduction 

The Upper Indus River (UIR) basin provides important water re-
sources for agricultural use, (agricultural, industrial, and domestic) in 
Pakistan and the northwestern India. The UIR basin includes Chenab, 
Jhelum, Ravi, Sutlej, and Beas River basins. From the highland areas, the 
Kabul River is a reach of the UIR at the Tarbela Dam reservoir in 
Pakistan. Available water resources along these rivers are crucial to 
support the irrigated agriculture system over the downstream regions 
that feeds over 200 million people in Pakistan. The agriculture sector in 
Pakistan contributes to 23 % of the GDP and accounts for 43 percent of 
the country’s labor force (Usman, 2016). Due to strong variability of the 
regional hydroclimate system in Pakistan, regional communities are 
vulnerable to hydroclimatic extremes such as drought and flood. In 
2010, heavy monsoon rains over Pakistan caused flood inundation over 
20 % of the country and inflicted over US$ 16 billion in economic loss 

(Rehman et al., 2016). In 2018, the southern part of Pakistan had 
persistent precipitation deficits during monsoon season, causing a severe 
drought (Adnan and Ullah, 2020). Therefore, it is crucial to understand 
variability and trend of the regional hydroclimate system and the future 
changes of water availability in Pakistan (Bukhari et al., 2020). 

Pakistan is a predominantly agricultural country with the abundant 
arable land lying within the Indus River basin. There are two agriculture 
seasons in Pakistan named ‘Kharif’ and ‘Rabi’. The Kharif season refers 
to summer growing months (May to November), with the major crops 
cultivated being rice, corn, and cotton. Crop productivity largely de-
pends upon the amount and distribution of rain associated with the 
monsoon activities during the Kharif season (Ahmed et al., 2019). The 
Rabi season refers to winter growing months (December through April of 
the following calendar year), with the major crops being wheat, barley, 
and millet (Pakistan, 2009). The planting window differs regionally, 
depending on available water supply, regional climate, and cultivated 
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crop type. The major limitation to production is generally the timing and 
availability of the irrigation water supply, and the efficiency of water on- 
farm. Due to missing irrigation systems, major crop productivity in the 
upstream regions of Pakistan is affected by climate variability. Most of 
this water supply in the UIR basin comes from remote glaciers of the 
Himalayan and Karakorum mountain ranges while the remainder comes 
from seasonal rainfall, especially during the monsoon season from July 
to September. Siddiqui et al. (2012) found that major crops of Pakistan 
are vulnerable to increased surface temperature, which can cause 
destructive agricultural losses. 

Several studies have reported hydroclimatic changes over South Asia 
including Pakistan. Shahid and Rahman (2021) found a significant 
increasing trend of near-surface temperature during springs and sum-
mers over the Indus basin and a significant decreasing trend of spring-
time precipitation over 1985–2015, raising a concern of a possible 
change in the drought risk. Mazhar et al. (2016) reported a decline in 
summertime precipitation in the Himalayas over 1866–2006. Archer 
(2003) found increased wintertime precipitation over gauge stations of 
the UIR basin since 1960. Kehrwald et al. (2008) found a rapid retreat of 
glaciers in the Himalayas, resulting in increased springtime freshwater 
resources in the downstream regions. 

According to climate projections, the Indus and Brahmaputra River 
basins would experience decreased streamflow in the future (Immerzeel 
et al., 2010). Khan et al. (2020) found that warmer surface temperature 
would increase mean annual flow in the future, ranging from 10 % to 30 
% under the future scenarios for the mid-21st century (2041–2070). 
Spring and winter flows significantly can cause an increased risk of 
future flood hazards for the UIR basin. Archer et al. (2010) found that 
there is no evidence of significant reduction in available water resources 
over the UIR basin due to climate change. However, socio-economic 
changes would threaten the sustainability of available water resources 
in the UIR basin. Based on the findings of previous studies, the impact of 
surface warming-driven changes in streamflow and available water re-
sources on seasonal changes of the hydrologic regime in Pakistan re-
mains uncertain. 

Over mountainous regions, the onset of a snow-melting season 
mainly determines the timing of spring onset and crop planting. Snow 
and ice-melting processes are sensitive to changes in near-surface tem-
peratures. For example, warmer near-surface temperatures in late 
winter and early spring accelerates snow and ice-melting processes, 
causing seasonal changes in soil moistures such as an early onset of 
spring (Cayan et al., 2001; Kam et al., 2022; Evan and Eisenman, 2021). 
A wet soil moisture condition in early spring is favorable for floods and a 
dry soil moisture condition in the following season is favorable for 
wildfires and heatwaves ( Kim et al., 2020). In addition, a previous study 
(Huss and Hock, 2018) found that streamflow volumes would increase 
as glaciers melt due to climate change, but that they would reach a “peak 
water” phase when streamflow volumes would begin to recess as gla-
ciers run out of mass. Qin et al. (2020) found that climate change has 
altered the regional water balance due to changes in the fraction of 
precipitation falling as snow and the timing of snowmelt over the 
Himalayas, Andes, and other mountainous regions. Eventually, these 
seasonal hydrologic changes can increase the risk of springtime floods 
and summertime droughts (Kam et al., 2018), causing the crop failure 
over snow-dominant regions where is more vulnerable to food security. 

Seasonal hydrologic changes have been studied mainly over the 
North American and European regions due to the availability of long- 
term records of daily streamflow. Over the western U.S. region, obser-
vational data showed an earlier spring onset (Schwartz and Reiter, 2000; 
Menzel and Fabian, 1999; Cayan et al., 2001; Barnett et al., 2005; 
Dudley et al., 2017; Wasko et al., 2020). A recent study assessed the 
linkage of wildfire-driven evapotranspiration shift to streamflow timing 
(Collar et al., 2022). Over the European region, the earlier spring onset 
caused such seasonal changes, such as leaf unfolding, have advanced by 
six days whereas autumn events, such as leaf coloring, have been 
delayed by about five days (Menzel and Fabian 1999) and thus extension 

of the growing season (Liu et al., 2018). According to Coupled Model 
Intercomparison Phase 5 (CMIP5) models, the U.S. region showed 
geographical variation of trends in winter-spring streamflow timing 
with a weaker indication of detectable anthropogenic contributions to-
wards the earlier streamflow timing in the western U.S. region. They 
reported a high sensitivity of WSCT trends over the western part of 
North America to the record length and climate model bias. In 
high-mountain Asia, the sensitivity of hydrologic responses (e.g., glacier 
mass changes) to surface warming are spatially heterogeneous (Kapnick 
et al., 2014; Sakai and Fujita, 2017). Understanding of hydrologic 
response, particularly in streamflow timing, to surface warming in 
high-mountain Asia remain limited (Sharif et al., 2013). 

Springtime streamflow of the UIR originates mainly form glacial ice 
and snowpack in Hindukush, Himalaya, and the Karakorum, one of the 
largest mountainous regions that contain the world largest hoard of 
snow and ice masses, except for the Polar Regions (Soncini et al., 2015), 
while the remainder comes from seasonal rainfall during monsoon 
season (July to September). Dahri et al. (2021) found that the median 
annual air temperature for the Indus basin is projected to be increased 
with a range between 0.8 and 5.7 ◦C by the end of the 21st century. This 
near-surface warming trend would result in an increase in the maximum 
rate of discharge during the wet season in Indus, Kabul, Jhelum, and 
Chenab Rivers, suggesting a need of critical modification in the strate-
gies to mitigate the adverse effects of future floods and droughts con-
ditions. Archer (2003) found that summertime streamflow volumes are 
governed by melt of glaciers and permanent snow (thermal control in 
current summer), melt of seasonal snow (controlled by preceding winter 
and spring precipitation), and winter and monsoon rainfall. Hasson 
(2016) found that the median warming of 1 ◦C or more than 1.5 ◦C 
projects the drying of the monsoon (July – September) and the shift of 
snowpack accumulation/melt season (March – June). 

Recent climate change studies over Pakistan have been focused on 
changes in climatic and hydrologic variables. Yaseen et al. (2020) 
studied the variability of the hydrometeorological time-series over UIR. 
They found a warming trend of low altitude stations and an increase in 
the streamflow was also detected during winter and spring seasons at all 
hydrological stations, while the annual precipitation showed significant 
decreasing trend for most of the stations. They also reported annual 
runoff exhibited significant deceasing trends over Jhelum (five stations) 
and Indus basin (five stations). Ougahi et al. (2022) found that the in-
creases of the late spring (April through June) water yield were associ-
ated with increased annual precipitation and temperature, suggesting a 
possibility to alter the seasonality of river flows in the Indus River basin. 
The increasing temperature and precipitation patterns and altering 
timing of snowfall and glacial melt leads to change in the seasonality of 
river flows. However, direct studies of seasonal changes in the regional 
hydrologic response over Pakistan, are limited. 

This study aims to investigate past and future changes in streamflow 
timing in Pakistan from daily streamflow records and simulated daily 
streamflow data. To achieve it, a river-routing model (Lohmann et al., 
1998) is run forced by simulated runoff data from six regional climate 
models and bias corrections of minimum and seasonality is applied to 
simulated streamflow data. Our overarching questions are included:  

1. Are regional hydroclimate projections reliable to investigate changes 
in the timing of seasonal streamflow?  

2. How much can bias corrections improve simulated daily streamflow?  
3. Are the changes in streamflow timing detectable over the past?  
4. How are changes in streamflow timing sensitive to future climate 

scenarios? 

The findings of this study will advance the current knowledge of 
seasonal hydrologic changes in Pakistan and provide a direction for 
proactive climate change mitigation and preparedness plans for future 
hydroclimatic extremes such as droughts and floods. 
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2. Data and method 

2.1. Study region and data 

Typically, large river basins are heavily regulated by dams and res-
ervoirs. Pakistan has two major multi-purpose storage reservoirs, Man-
gla and Tarbela (FAO, 2022). Tarbela and Mangla are located along 
Upper Indus River and Jhelum River, respectively. Kabul and Chenab 
Rivers are regulated at and Warsak reservoir located in the valley of 
Peshawar and Marala barrage, respectively. In this study, the four gauge 
stations along Upper Indus, Kabul, Jhelum, and Chenab River basins are 
selected as the study basins based on the availability of long-term 
(greater than 30 years) daily streamflow records, indicating that these 
stream gages are located upstream of these reservoir control features 
(Fig. 1). The gaging stations for the four river basins are located at 
various elevations ranging from 425 to 490 m. The drainage areas of 
these four basins range between 168,350 (Indus) and 32,282 (Chenab) 
km2. Specific information for the study river basins is provided in 
Table 1. 

This study uses daily streamflow records at the four stations of the 
study river basins over 1962–2019. Previously, these daily streamflow 
data have been used by Akhtar et al. (2020) that retrieved the stream-
flow records through the Global Change Impact Studies Center Pakistan 
(http://www.gcisc.org.pk/). In addition, monthly near surface temper-
ature (NST) and precipitation from the Climate Research Unit (CRU) 
high-resolution gridded datasets (Harris et al., 2020; http://crudata.uea. 
ac.uk/cru/data/hrg/) were used to compute the regional monthly av-
erages over the corresponding drainage area. These regional monthly 
averages of NST and precipitation were averaged over January through 
June to investigate the associations between changes in climatic and 
hydrologic variables the catchment-scale. The NOAA Climate Data Re-
cord of Northern Hemisphere Snow Cover Extent version 1 are used to 
compute weakly snow cover extent fraction of the Indus river basin 
(Estilow et al., 2015). 

Simulated daily mean surface and base runoff from the Coordinated 
Regional Climate Downscaling Experiment-South Asia (CORDEX-South 
Asia) regional climate model simulations are used to estimate the future 
changes in streamflow timing (Sanjay et al., 2017). Near surface tem-
perature from the CORDEX-South Asia regional climate projections are 
used to compute changes in near surface temperature in the near and far 
future (the 2050–2059 and 2090–2099 average, respectively). The 
CORDEX-South Asia regional climate model projections include the 25- 
km (0.25-degree) resolution meteorological and land surface data from 
one ensemble member of historical and future simulations of six models 
(CanESM2, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-ESM2M, IPSL-CM6A- 
LR, and MRI-ESM-MR). They provide the Representative Concentration 
Pathway (RCP) 4.5 and RCP 8.5 future scenario simulations (Giorgi and 
Gutowski, 2015). The RCP 4.5 and RCP 8.5 scenario runs are stabilized 
radiative forcing at 4.5 W/m2 and 8.5 W/m2 in the year 2100. Previ-
ously, the CORDEX-South Asia climate projections have been used to 
understand the future changes in Hydroclimatology over the Himalayan 
region, particularly Indian monsoon system (Choudhary and Dimri, 
2018; Raju et al., 2015), hydroclimatic extremes (Suman and Maity, 
2020; Rai et al., 2019), and water security (Dubey et al., 2020). 

Fig. 1. Study River basins of Chenab (dark green), Indus (pink), Jhelum (sky blue), and Kabul (blue) river. Black dots depict the geographical locations of the 
corresponding gage stations. Background colors and a color bar depict elevations above sea level. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Table 1 
Geographical information of the gauge stations for the Indus, Kabul, Jhelum, 
and Chenab River basins.  

River Indus Kabul Jhelum Chenab 

Area [km2] 168,350 92,605 33,470 32,282 
Elevation [m] 490.20 305.50 341.74 244.70 
Longitude [◦E] 72.70 71.99 73.63 74.46 
Latitude [◦N] 34.09 34.01 33.12 32.67  
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2.2. Methods 

2.2.1. Simulated streamflow using a river routing model 
To simulate daily streamflow at four river basins in Pakistan, the 

Variable Infiltration Capacity-River Routing Model (VIC-RRM; Lohmann 
et al., 1998) was run forced by simulated daily total surface and base 
runoff data from six CORDEX-South Asia regional climate projections. 
The VIC-RRM has been developed to resolve a linearized version of the 
Saint-Venant equations (Lohmann et al., 1996). The original (gauge- 
based) and modified (grid-based) versions of this model has been used 
and validated in many previous studies at various spatial scales (Nijssen 
et al., 1997; Sheffield et al., 2013; Yuan et al., 2015). 

In this study, the grid-based streamflow routing model was used 
since it can be simulated at the large spatial scale that is consistent to the 
scale of the CORDEX regional climate projections. The source code for 
the gridded version of VIC-RRM is available upon request to the corre-
sponding author. The VIC-RRM simulates daily streamflow via a simple 
linear transfer function, assuming that total runoff (surface + base 
runoff) at each grid cell (herein, 25-km by 25-km grid cells) is trans-
ferred into at least one of the eight adjacent grid cells (Lohmann et al., 
1996). In addition, the runoff transport process is assumed to be linear 
and time-invariant (Lohmann et al., 1998) and the causality and the 
impulse response functions between grid cells are nonnegative (Duband 
et al., 1993; Littlewood and Jakeman 1994). Based on the 25-km digital 
elevation model (DEM) data, first topography information including the 
slope, stream order, and flow direction were calculated and then water 
transport velocity, the drainage area of this grid cell and the distance to 
next grid cell. Then, daily streamflow at each grid cell was calculated 
using simulated daily runoff data from historical (1962–2005) and 
future (2006–2099) projections of the CORDEX-South Asia regional 
climate models. 

2.2.2. Bias correction of minimum and seasonality 
Bias correction methodologies are necessarily applied to simulated 

daily streamflow data due to the well-known climate model bias for 
hydrologic studies (Kam et al., 2018; Bennett et al., 2022; Meresa et al., 
2022). In this study, minimum bias correction is applied to simulated 
streamflow data, instead of mean bias correction, to minimize negative 
values during the low flow season. Simulated daily streamflow were 
subtracted by the minimum of simulated streamflow over 1962–2005, 
and then were multiplied by the ratios of the standard deviations of 
observed to simulated daily streamflow for the corresponding calendar 
year. Then, they were added by the observed minimum streamflow 
value over 1962–2005 (Eq. (1)). It is worth noting that daily streamflow 
on the last day of February of lunar years was added to daily streamflow 
on the previous day to have the constant time step of each year (t = 1, …, 
365). 

Qcorr minj(t) = Qobs min +
Std

(
Qobsj

)

Std
(

Qsimj

)×(Qsimj(t) − Qsim min(t)) (1)  

where Qcorr minj(t) is minimum bias-corrected simulated daily stream-
flow for a day, t (t = 1, …, 365), of the calendar year, j (j = 1962, …, 
2005), Qobs_min and Qsim_min are the minimum values from observed and 
simulated streamflow, respectively, over 1962–2005, and 
Std(Qobsj)andStd(Qsimj) are the standard deviations of observed and 
simulated streamflow, respectively, for a calendar year, j. 

In this study, a simple weighting bias correction by a ratio of 
observed to simulated standard deviations was used to resolve non- 
stationarity of the hydrologic system, particularly in the future (Kam 
et al., 2018), instead of the quantile machanig bias correction that is 
based on the stationarity of the hydrologic system and is appropriate for 
reconstruction of streamflow data over the past. After the minimum bias 
correction, the annual total streamflow is computed by summing daily 
streamflow during a calendar year, j (Eq. (2)). 

Qcorr minj =
∑365

t=1
Qcorr minj(t) (2)  

Next, the cumulative percentages of minimum bias-corrected daily 
streamflow for each calendar year were computed (Eq. (3)). 

Δj(t) = 100*
∑t

t=1Qcorr minj(t)
Qcorr minj

(3)  

where Δj(t) is the cumulative percentage of daily streamflow on a day, t, 
of the calendar year, j. 

In this study, daily seasonality bias, δ(t), was defined as the long-term 
(1962–2005) averages of the difference between daily cumulative per-
centages of observed and simulated daily streamflow (Eq. (4); (c) in 
Fig. 2). 

δ(t) =
∑2005

j=1962
(
Pobsj(t) − Psimj(t)

44
) (4)  

where the Psimj(t)and Pobsj(t) are the cumulative percentiles of raw 
simulated and observed daily streamflow on the tth day of the jth cal-
endar year, respectively. 

We assumed that the model discrepancies (herein, seasonality bias) 
with observational records are constant over time (Ho et al., 2012). For 
example, the errors in the relationship between the distribution of 
observed and simulated daily streamflow are the same in the past and 
future. This assumption allows correction of future simulated stream-
flow to be obtained by adding the seasonality bias to the cumulative 
daily streamflow percentage. After computing the seasonality bias, the 
cumulative daily streamflow (Qcorrsea j(t)) is disaggregated at the daily 
scale through Eqns. (5)&(6). 

Qcorrsea j(t) =
Δj(t) + δ(t)

100
× Qcorr minj (5)  

Qcorrj (t) =
{ Qcorrsea j(t), if t = 1

Qcorrsea j(t) − Qcorrsea j(t − 1), if t > 1 (6)  

After the minimum and seasonality bias correction, few negative values 
are found from the corrected simulated streamflow data. These negative 
values are around 0.5–2 % for all the basins during the overlapping 
period (1962–2005) and less than 1 % for all the basins in the near and 
far future. To compute the CVD values, negative streamflow data are 
replaced with the seven-day average values centering on the dates with a 
negative value (− 3 and +3 days). 

2.2.3. Calculation of streamflow timing 
Streamflow timing have been often measured by half-flow dates as 

the dates on which half of the annual/seasonal total streamflow has 
passed (Court, 1962); (Hodgkins et al., 2003). In this study, half of cu-
mulative daily streamflow (HCSj) and the center-of-volume dates 
(CVDj) for a calendar year, j, were computed using Eqs. (7) and (8), 
respectively (Fig. 3). 

HCSj =

∑365
t=kqj(t)

2
(7)  

CVDj = min[m|
∑m

i=k
qj(t) ≥ HCSj/2] (8)  

where m is the mth days of the calendar year j, when the cumulative daily 
streamflow from the first day to the mth day exceeds HCSj first time 
within the calendar year, j. 

To evaluate the impact of bias correction on the performance, two 
common goodness-of-fit metrices (Nash-Sutcliffe Efficiency (NSE) and 
Kling-Gupta Efficiency (KGE) of bias-corrected streamflow data were 
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reported in Section 3.1. NSE is calculated as one minus the ratio of the 
error variance of the modelled time series to the variance of the observed 
time-series (Eq. (9)). While a perfect model has one of NSE, a model that 
has the same prediction skills than the average of the mean observed 
values has zero of NSE. 

NSE = 1 −
∑2005

j=1962
∑365

t=1Qobsj (t) − Qcorrj (t)
∑2005

j=1962
∑365

t=1Qobsj (t) − Qobsj

(9)  

KGE has been increasingly used for model calibration and evaluation 
(Eq. (10)) since it combines the three components of NSE (correlation, 
variability bias and mean bias) in a balanced way (Eq. (10); Knoben 

Fig. 2. Seasonality bias correction for Indus basin. Black solid and colored (red, yellow, blue, green, purple, and brown) dash lines depict seasonality (the 1962–2005 
averages) (a), cumulative percentages (b), and the difference between the cumulative daily percentages (c) of observed and raw simulated streamflow of observed 
and raw simulated daily streamflow from six CORDEX-South Asia regional climate models. In (d), black solid and colored (red, yellow, blue, green, purple, and 
brown) dash lines depict cumulative percentages of observed and bias-corrected daily streamflow from the six climate models. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Cumulative daily streamflow of Indus River from January to June in 1970 (blue line) and 2010 (red line). Blue and red arrows depict the half of HCSs (y-axis) 
and CVDs (x-axis) in 1970 and 2010, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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et al., 2019). While a perfect model has one of KGE, a model that has the 
same prediction skills than the average of the mean observed values has 
− 0.41 of KGE. 

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (β − 1)2

+ (γ − 1)2
√

(10)  

where r is the Pearson correlation coefficient between observed and 
bias-corrected streamflow, β is the ratio of the long-term averages of 
bias-corrected streamflow to observed streamflow (bias ratio), and γ is 
the ratio of coefficients of variation of bias-corrected streamflow to 
observed streamflow (variability ratio). 

2.2.4. Mann-Kendall test 
In this study, the non-parametric Mann-Kendall (MK) test (Mann, 

1945; Kendall, 1975; Lettenmaier et al., 1994) was conducted to check 
the significance of the past trend of hydroclimate variables over the four 
study river basins. In this study, the trends were evaluated at the sig-
nificant level (α), 0.05 and 0.1 for two-tail test. The MK test determines 
whether a time series of streamflow has a statistically significant 
(monotonic) trend of streamflow. In this study, the Python module 
’pyMannkendal’ is used to compute MK statistics (Hussain and Mahmud, 
2019). This package reports the sign of the trend (increase/decrease) 

and statistical significance (True/False) based on multiple statistics, 
including p-value, z (normalized test statistics), Tau (Kendall tau), s 
(Mann-Kendall score) and its variance, slope (Sen estimator/slope), and 
an intercept of Kendall robust line. A more detailed description of the 
MK test is found in (Kumar et al 2009). 

The original MK test does not account for autocorrelation in the data 
when the significance of a monotonic trend is evaluated. Different ver-
sions of the MK test have been previously proposed to account for short- 
and long-term consistency. These versions were applied to remove the 
autocorrelation structure (Kam and Sheffield, 2016) and long-term 
persistency (Kumar et al., 2009) in observed streamflow data. In this 
study, the results from the classical MK test are reported because we 
found that time series of CVDs are serially independent (not shown). 

3. Results 

3.1. Evaluation of bias-corrected streamflow 

Fig. 4 shows Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Effi-
ciency (KGE) metrics of simulated and bias-corrected streamflow data 
against observed streamflow data. Raw simulated streamflow data over 
all the four basins show negative NSE values with different magnitudes 

Fig. 4. Goodness-to-fit performance of simulated 
streamflow: Nash-Sutcliffe Efficiency (NSE) (a) and 
Kling-Gupta Efficiency (KGE) (b) for the four river 
basins. Red, blue, and green colored lines depict NSE 
and KGE values of raw simulated, minimum bias-only 
corrected, and minimum and seasonality bias cor-
rected streamflow and the circle on center shows the 
mean value for each, respectively. (For interpretation 
of the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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(Indus (1st largest negative NSE value), Jhelum (2nd), Kabul (3rd) and 
Chenab River basins (4th)). Generally, the goodness-to-fit metrics are 
significantly higher over all the four river basins after the minimum bias 
correction. The impacts of seasonality bias correction after minimum 
bias correction are various across the metrics and study basins. The NSE 
shows significant improvement of the performance after seasonality bias 
corrections across the study basins. The KGE shows no significant 
improvement over Indus and Kabul River basins while Jhelum River 
basin still show a significantly higher KGE value after seasonality 
correction. The results are consistent with those from the minimum bias 
correction after the seasonality bias correction, implying that the order 
of the bias corrections has no impact on uncertainty reduction. There-
fore, the minimum bias correction is a key contribution of uncertainties 
reduction in simulated streamflow with a minor impact of the season-
ality bias correction across the basins. It also implies that a calibration 
strategy deign is carefully designed when simulated streamflow data 
from climate models are used for regional hydrologic studies and a 
robust goodness-to-fit assessment is required through multiple verifi-
cation metrics. 

3.2. Seasonality and past changes in hydroclimatology over Pakistan 

Fig. 5 shows the seasonality of the regional averages of NST and 
precipitation over the drainage areas of the study river basins. Overall, 
the NST shows a boreal seasonal cycle with a peak month in July. The 

Indus River basin has only four (June through September) months when 
the NST is above the freezing temperature of water (0 ◦C). Other three 
river basins have seven (Kabul) to nine months above 0 ◦C. This is 
because the corresponding drainage area to the Indus River basin covers 
high-elevation regions covering the Hindukush, Karakorum, and 
Himalaya ranges (Fig. 1). The seasonality of precipitation shows two 
peak wet seasons within the calendar year in early spring (March) and 
summer (July and August). These two peaks shows maximum value of 
precipitation during the two crop growing seasons of Pakistan, the Rabi 
(December–April) and Kharif (May–November) seasons. The Indus River 
basin has the lowest precipitation among the study river basins and 
shows a slightly higher peak of summertime (July-August) precipitation 
than that of springtime (February-April) precipitation. 

The Kabul River basin has the 2nd lowest precipitation with low 
summer precipitation, indicating a weak impact of Indian monsoon due 
to the tropospheric anomalous high over the western central Asia (Saeed 
et al., 2011). Jhelum and Chenab River basins have a common season-
ality of precipitation with a much higher peak in July and August when 
Indian monsoon is active. 

The sign of observed trends in HCSs were negative, but insignificant, 
for all four river basins (Table 2). Bias-corrected streamflow data show 
consistency with half volumes from observational records for the four 
river basins, that is, the observed half volumes are placed between the 
minimum and maximum of half volumes from six CORDEX models over 
most of 1962–2005 (Fig. 6). Over the Indus River basin, observed half 

Fig. 5. Seasonality of precipitation (blue line with circle markers, mm/day) and near surface temperature (red line with square markers, ◦C) over Indus (a), Kabul 
(b), Jhelum (c), and Chenab (d) River basins. Seasonality is computed from the averages of precipitation and near-surface temperature over 1962–2019. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

S. Ali et al.                                                                                                                                                                                                                                       



Journal of Hydrology 617 (2023) 128959

8

volumes are near or at the maximum of simulated half volumes and 
show higher half volumes in 1960s than the maximum of simulated half 
volumes, that is, simulated half volumes are inconsistent with observed 
half volumes. Over the Kabul and Chenab River basins, observed half 
volumes are near or at the minimum of simulated half volumes and 
higher half volumes. 

For the four study river basins, observed CVDs are generally between 
late April through early June (100th through 180th day of the calendar 
year) and show a decreasing trend over 1962–2019 (Fig. 7). Bias- 
corrected streamflow data show consistency with observed CVDs for 
the four river basins over 1962–2005. Observed CVDs are close to the 
minimum of bias-corrected CVDs from the six CORDEX models for 
Jhelum River basin while observed CVDs are close to the average of the 
six CORDEX models for the rest of the three study river basins. Over 

1962–2019 observed CVD values have become earlier by about 5, 9.1, 
12.6, and 12.5 days for Indus, Kabul, Jhelum, and Chenab River basins, 
respectively, indicating an earlier onset of the spring season in the recent 
decades. 

The relationship of observed CVDs with the monthly minimum near 
surface temperature in March (May) are examined over Indus, Chenab, 
and Jhelum River basins (Kabul River basin) when their negative cor-
relation is strongest (not shown). The results show that the NST has 
increased over 1962–2019 by about 2.0 ◦C across the study basins, 
implying that the decreasing trend of CVD can be related to early 
melting of snow cover and glaciers over land due to the increased 
minimum NST. However, it requires further studies about precipitation- 
snow cover-NST interactions. 

Table 2 
Sen slopes of observed near-surface temperature, precipitation, CVD, and first half volume for the four river basins. Near-surface temperature and precipitation are the 
corresponding drainage area averages of the mean temperature between January through June. Numbers in bold and italic depict a statistically significant trends from 
a non-parametric Mann-Kendall’ test at the significant level, 0.05 and 0.1, respectively, for two-tail test.    

Indus Kabul Jhelum Chenab 

NST Slope 
[◦C/year]  

þ0.030  þ0.023  þ0.021 þ0.024 

p-value  4.55e-09  8.00e-05  9.45e-05 5.61e-07  

Precipitation Slope 
[mm/day/year]  

+0.003  +0.013  +0.003 +0.004 

p-value  0.018  0.033  0.447 0.545  

CVD Slope 
[day/year]  

− 0.107  ¡0.166  ¡0.222 − 0.208 

p-value  0.035  0.005  0.002 0.056  

HCS Slope 
[m3/year]  

− 0.015  − 0.018  − 0.009 − 0.013 

p-value  0.375  0.307  0.502 0.354  

Fig. 6. Annual time series of half of observed (black soil lines) and simulated HCSs (dashed lines) for Indus (a), Kabul (b), Jhelum (c), and Chenab (d) River basins. 
Blue and red dashed lines depict of the average and minimum/maximum of half of simulated HCSs of the six CORDEX-South Asia regional climate models. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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3.3. Outlook of changes in CVD 

Fig. 8 shows the future changes in CVDs for near and far future (the 
averages over 2050–2059 and 2090–2099, respectively). The CVDs from 
corrected streamflow data shows that CVDs become earlier over all the 
four study basins in the future with spatial differences in the magnitude 
of the CVD changes. Overall, the four study river basins show earlier 
CVDs ranging from 8 to 13 days and 11 to 15 days in 2050s and 2090s, 
respectively, under the RCP4.5 scenario. The Indus and Chenab River 
basins show earlier CVDs by 22 and 16 days, respectively, in 2050s of 
the RCP8.5 scenario while the Kabul and Jhelum River basins show 
earlier CVDs by 10 days. In 2090s of the RCP8.5 scenario, the Indus and 
Chenab River basins show earlier CVDs by 37 and 32 days, respectively, 
and the Kabul and Jhelum River basins show earlier CVDs by 15 and 24 
days, respectively. 

From the future CORDEX-South Asia climate projections, the future 
changes in near surface temperatures (NST) are further examined as a 
potential cause of the future CVD changes for the study river basins 
(Fig. 9). There is a general tendency of NST that near surface is warmer 
by above 2 ◦C and 5 ◦C in the near and far future, respectively, across the 
study river basins. The results indicate that the hydrologic response to a 
similar magnitude of near-surface warming varies, depending on 
regional climate and the geographical characteristics of the catchment 
on interest. 

4. Discussion 

According to the bias-corrected CORDEX climate projections, 
observed decreasing trends of the CVD will likely continue. This study 
found spatial variations of the magnitude of CVD changes across the 

Fig. 7. Same as Fig. 6, except for center-of-volume dates (CVDs).  

Fig. 8. Future changes in CVDs from bias-corrected daily streamflow relative to the 1962–2019 climatology. Square and circle markers depict changes of CVDs in the 
near (2050–2059) and far (2090–2099) future, respectively. Red and orange box plots depict future changes in CVDs from the RCP8.5 and RCP4.5 future scenarios, 
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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study river basins given a similar magnitude of near surface warming in 
the future. Different hydrologic responses can be related to regional 
precipitation seasonality and geographical characteristics, including 
location, elevation, land cover, and slope. For example, mountainous 
regions have snowfall, which are stored in a form of snowpack during 
the winter months. In the early spring months, snowpacks are melted 
during the spring months when the surface temperature is above the 
freezing temperature. The geographical characteristics (e.g., slope 
aspect) will strengthen or weaken the change of surface warming on the 
rate of snow-melting processes, which can lead to diversity in the sea-
sonal changes in streamflow timing over mountainous areas like our 
study basins (Kapnick et al., 2014; Kang et al., 2016; Kam et al., 2018; 
Gordon et al., 2022), except for Kabul River basin (an arid/semi-arid 
region). 

If precipitation shows no significant trend, changes in the seasonality 
of streamflow is strongly correlated with changes in the speed of snow 
melting over snow-dominant regions like the Upper Indus River (e.g., 
change in the fraction of snow cover areas; Fig. 10). However, current 
regional and global climate models have a poor representation of snow 
melting processes due to the coarse resolution of the models and missing 
the detailed physics for snow-melting processes in the coarse resolution 
models. Therefore, higher resolution models that include detailed snow- 
melting processes is required for reliable regional hydrologic projections 

(Du et al., 2022; Meresa et al., 2022). 
Similar results were also found by Ougahi et al. (2022), using a 

semi-distributed hydrologic model, Soil and Water Assessment Tool. 
They found that the climate change has implications for the water re-
sources by a combination of changes in temperature and precipitation 
patterns, resulting in seasonal changes of river flows. These changes will 
affect the crop productivity over Pakistan. A recent study (Dahri et al., 
2021) on climate and hydrologic regimes of high-altitude Indus basin 
found that the mean air temperature is projected to increase further 
between 0.8 and 5.7 ◦C by the end of 21st century. The inflow of 
Indus-Tarbela is likely to increase compared to Kabul, Jhelum and 
Chenab River inflows. Furthermore, a substantial increase in the 
magnitude of peak flows and one-month earlier attainment is also pro-
jected for all river gauges. However, this study found a non-significant 
trend of the mean precipitation for January through June and the 1st 
half volume since 1962, which need a further investigation for an 
emergence time of the trends in hydroclimatic variables during winters 
and springs over the study regions. 

Global climate change affects the regional climate and hydrologic 
systems differently. This study was focused on past and future seasonal 
changes over Pakistan as a regional hydrologic response of the high 
mountainous region to global climate change. This study found a sig-
nificant change of streamflow timing over Pakistan during the late 

Fig. 9. Same as Fig. 8, except for changes in near-surface temperature anomalies relative to the 1962–2019 climatology.  

Fig. 10. Daily discharges of the Indus River basin in 
1970 (blue solid line) and 2010 (red solid line). Blue 
and red dash lines depict weekly percentages of snow 
cover area from NOAA Climate Data Record (CDR) of 
Northern Hemisphere (NH) Snow Cover Extent (SCE) 
version 1 in 1970 and 2010, respectively. Percentages 
of the snow cover area are shown in the secondary y- 
axis (right). (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
web version of this article.)   
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winter and early spring, which can affect crop yield with the current 
planting and cultivating schedules. The proposed methods are appli-
cable to other high mountainous Asian countries where the long-term 
daily streamflow data is available. Recently, the reanalysis products, 
such as ECMWF Reanalysis version 5 (ERA5; Hersbach et al., 2020), 
provide global long-term hydrologic variables, leading to research op-
portunities to explore the past seasonal change of hydrologic systems 
around the world (Bain et al., 2022). New global datasets are available 
to extend the proposed bias-correction methods to evaluate changes in 
streamflow timing in mountainous regions including the Himalayas, 
Andes and other mountainous regions where are susceptible to climate 
change (Mishra, 2015; Immerzeel et al., 2020). In addition, a new phase 
of the CORDEX project (Gutowski Jr. et al., 2016) provides the relatively 
high resolution hydroclimatic projection, which also enable us to 
explore the climate change impact on regional hydrologic response via 
the proposed methods in this study. 

The findings of this study were based on the upstream gauge stations 
to avoid human disturbance. The current water engineered systems in 
the downstream regions can mitigate the impact of climate change, but 
understanding of to what extent they can mitigate remain unknown. 
This study suggests the need to further investigate the capacity of the 
current water engineered systems in the downstream regions for climate 
change adaption and mitigation. This study also alerts other high 
mountain Asian countries of the need to investigate the need to upgrade 
water engineer systems and water resources management planning. 

5. Conclusions 

This study highlights the diverse hydrologic responses in Pakistan to 
+2/+6 ◦C near surface warming, which can cause changes in the risk of 
climatic extremes, such as droughts and floods. This study informs a 
need for proactive climate adaptation planning to meet the regional and 
national forthcoming needs and basin-based strategies for sustainability 
of water resources systems in Pakistan. To mitigate efficiently the impact 
of climate change in Pakistan, further studies for actual causes of the 
decrease in the CVDs and their impacts on the risk of climatic extremes 
in the following summer months are warranted. 

Furthermore, the two crop growing seasons of Pakistan, Rabi (agri-
culture crops sown in winter and harvested in the spring) and Kharif 
(domesticated plants cultivated and harvested during the rainy season) 
will be altered due to this change in the CVD and half volume values in 
future. During the Kharif season, streamflow is dominated by snowmelt- 
based flows in early spring and monsoon rainfall in summer while pre-
cipitation is mostly in the form of snowfall and the baseflow is from 
groundwater during the Rabi season. As the streamflow cresting is 
shifting earlier, the definitions of these seasons will likely change. This 
study suggests the need to update of the current crop planning schedule 
for climate change adaptation. 
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Kang, D.H., Gao, H., Shi, X., ul Islam, S., Déry, S.J., 2016. Impacts of a rapidly declining 
mountain snowpack on streamflow timing in Canada’s Fraser River basin. Sci. Rep. 
6, 19299. https://doi.org/10.1038/srep19299. 

Kapnick, S.B., Delworth, T.L., Ashfaq, M., Malyshev, S., Milly, P.C.D., 2014. Snowfall less 
sensitive to warming in Karakoram than in Himalayas due to a unique seasonal 
cycle. Nat. Geosci. 7, 834–840. https://doi.org/10.1038/ngeo2269. 

Kehrwald, N.M., Thompson, L.G., Tandong, Y., Mosley-Thompson, E., Schotterer, U., 
Alfimov, V., Beer, J., Eikenberg, J., Davis, M.E., 2008. Mass loss on Himalayan 
glacier endangers water resources. Geophys. Res. Lett. 35. 

Kendall, M.G., 1975. Rank Correlation Methods. Griffin, London.  
Khan, A.J., Koch, M., Tahir, A.A., 2020. Impacts of climate change on the water 

availability, seasonality and extremes in the upper Indus Basin (UIB). Sustainability 
12, 1283. 

Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H., Schaepman-Strub, G., 2020. Extensive fires in 
southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6, 
eaax3308. https://doi.org/10.1126/sciadv.aax3308. 

Knoben, W.J., Freer, J.E., Woods, R.A., 2019. Inherent benchmark or not? Comparing 
Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci. 23 (10), 
4323–4331. 

Kumar, S., Merwade, V., Kam, J., Thurner, K., 2009. Streamflow trends in Indiana: 
Effects of long-term persistence, precipitation and subsurface drains. J. Hydrol. 374, 
171–183. https://doi.org/10.1016/j.jhydrol.2009.06.012. 

Lettenmaier, D.P., Wood, E.F., Wallis, J.R., 1994. Hydro-climatological trends in the 
continental United States, 1948–88. J. Clim. 7, 586–607. 

Littlewood, I.G., Jakeman, A.J., 1994. A new method of rainfall-runoff modelling and its 
applications in catchment hydrology. Comput. Mech. Publ. 

Liu, Q., Piao, S., Janssens, I.A., Fu, Y., Peng, S., Lian, X.U., Ciais, P., Myneni, R.B., 
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