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QUESTIONS ANSWERS
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- What pattern is indicated by the current drainage observed in the south-Central Tian Shan? - The Saryjaz catchment in the south-Central Tian Shan shows a transient pattern characterized
by steepened fluvial channels with retreating knickpoints downstream of a sharp “U-shape” bend;
- How did the drainage patterns respond to Cenozoic structural reactivation and uplift of - The transverse reaches appear to capture the longitudinal ones, increasing incision downstream
individual ranges? And when? and causing knickpoint retreat starting from the Pliocene time.
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