High coseismic differential stress preserved
In the lattice of seismically shocked garnnets

KI. INTRODUCTION: A

Exhumed faults bearing pseudotachylytes (coseismic quenched frictional
melts, pst) can record the series of high-stress events consuming energy
on fault during an earthquake.

Microstructural studies of pst and host rock can provide information on
how this energy is partitioned.

We studied seismically-shocked garnets and measured the lattice damage
(residual elastic strains and GND) imparted by seismic rupture
propagation with HR-EBSD!".. Results are used to quantify the energy
consumed by crystal-plastic straining (W) of the minerals lattice during
an earthquake. W_,, is compared to fracture enrgy (W_¢) and heat (W_,) to
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Pseudotachylyte-bearing garnet-rich gneiss from the hanging wall of the
Woodroffe Thrust (Musgrave Ranges, central Australia).

Ambient conditions ca. 500 °C and 500 MPa'*.

Single-jerk pristine pseudotachylyte fault vein (3 mm thickness) (a, b, c).
Host-rock garnet is extensively fractured and pulverized (grainsize down
to 20 nm) close to the pst, with local Mn-enrichment (d, e).
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3. HR-EBSD MAPS:

with the pst

dislocations!
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In-plane components of normalised residual stress (f) and geometrically
necessary dislocations (GND) (g) define a gradient: highest values in contact

Restricted second moment of normalised sigma12 distribution (h) defines a
straight line at high stresses: stress is mainly determined by the presence of

Dislocations are produced during high-stress rupture propagation
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ECP

Ecp =
Estrain = 5(011811 + 02,2857 + 201,€13)
Ecnp = penp (GD?)/(2m)

Highest value of E__ [J/m?] is a minimum of the
energy dissipated along pst in the portion of rock
that was melted. E__ integrated across the vein

gives W_, [J/m?]

W_, =2x10* J/m?
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5. FRACTURE ENERGY:
grainsize distribution in a cataclastic domain obtained from EBSD maps (j)
and high-resolution BSE images (k).

Area-normalised distributions overlaps and define similar trends (1). The
grainsize distribution was extrapolated to the pst thickness to estimate
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/6. HEAT: I

work expended to heat the rock, melt and further heat the melt

Wpy = [H(1 — @) + ¢, (T, — Tiy )] pw

(H: latent heat of melting; Cp: thermal capacity; ¢: clast abundance in the pst;
0. density; w: pst thickness)

Host rock temperature (Thr) 500 °C
Maximum temperature (Tm) 1450°C

W_. ~ 1.3x10’ J/m?
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/7. CONCLUSIONS:

The crystal-plastic damage imparted by the propagating
rupture is preserved in host-rock garnets

The energy consumed to strain the crystal lattice is three
order of magnitude smaller than frictional heat and one
order of magnitude smaller than fracture energy

W,, = 1.3x107 + 2.9x10° +2x10° [J/m?]
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