

Fractionation of nitrogen and oxygen isotopic composition in N₂O produced by bacterial denitrification

Noémy Chénier^{1,2}, Paul M. Magyar¹, Lukas Emmenegger¹, Moritz F. Lehmann², and Joachim Mohn¹

¹Laboratory for Air Pollution / Environmental Technology, Empa, Überlandstrasse 129, Dübendorf, Switzerland

²Aquatic and Isotope Biogeochemistry, University of Basel, Bernoullistrasse 30, Basel, Switzerland

Introduction

- The isotopic composition of N₂O provides valuable information about the contributions from biological sources (e.g., denitrification) to N₂O accumulation in the atmosphere.
- We study ¹⁵N/¹⁴N and ¹⁸O/¹⁶O fractionation associated with N₂O production by pure cultures of different microbial and abiotic processes in realtime.
- First experiments are conducted with the denitrifier *Pseudomonas aureofaciens,* as it lacks N₂O reductase, which makes it possible to study N₂O production in isolation.

Fig. 1 – Pictures of the current setup.: bacteria culture with an alkaline CO_2 trap and a permeation dryer (left); QCLAS with mass flow controllers (MFC) (right).

Quantum cascade laser absorption spectroscopy (QCLAS)

- For on-line measurements of singly isotopically substituted species, we apply a spectrometer with a QC laser source emitting at 2203 cm⁻¹.
- For better temperature stability the spectrometer is enclosed in a Peltier cooled environment.
- In a second stage, doubly substituted isotopic species (Fig. 2) will be analyzed with a second spectrometer employing two laser sources (2142 and 2182 cm⁻¹).

Experiments

- Pure culture stocks of *P. aureofaciens* are used to inoculate a tryptic soy broth medium with 10 mmol KNO₃, which is expected to yield 5 mmol of N₂O at 100% conversion of NO₃⁻.
- N₂O production is quantified on-line by FT-IR spectroscopy.
- N₂O isotopic species (¹⁴N¹⁴N¹⁶O, ¹⁴N¹⁵N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁴N¹⁴N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁶N¹⁴N¹⁶O, ¹⁶N¹⁶N¹⁶O, ¹⁶N¹⁴N¹⁶O, ¹⁶N¹⁶N¹⁶O, ¹⁶N¹⁶O, ¹⁶N¹⁶N¹⁶O, ¹⁶N¹⁶O, ¹⁶
- For optimal accuracy of isotopic analyses, we target the measurement of both sample and calibration gases as N₂O in N₂ with comparable compositions.
- Consequently, CO₂ and H₂O were removed with an alkaline trap solution / permeation drying.

Fig. 3 – Current setup to analyze N₂O produced by *P. aureofaciens*

Results – evolution of N₂O

- First results indicate 3.5 mmol N₂O production by the bacterial culture within 11 days (29th March 8th April) (Fig. 4).
- N₂O produced yields 70% of the supplied NO₃⁻.
- N₂O isotopocules were measured for 5 days (3rd April 7th April) (Fig. 4).

Fig. 4 – N_2O mixing ratio from *P. aureofaciens*, measured with the FT-IR. Zoom: timeframe, where QCLAS measurements were executed.

Results – isotopic measurements

- During daytime, isotopic measurements were referenced calibration gases, while during nighttime no appropriate d correction could be applied (Fig. 5).
- A general increase over time in $\delta^{15}N^{\alpha},\ \delta^{15}N^{\beta}$ and $\delta^{15}N$ v observed.
- δ^{18} O and δ^{15} N^{SP} (= δ^{15} N^α δ^{15} N^β) varied between 40 35 ‰ a 5 and -10 ‰, with no clear trends.
- Overall average of δ¹⁸O, δ¹⁵N and δ¹⁵N^{SP} are 37.4 ‰, -2.3 ‰, -3.6 ‰.

Fig. 5 – On the left $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$, $\delta^{18}O$ (‰) vs. time; on the right $\delta^{15}N$ and $\delta^{15}N^{SP}$ (‰) vs. Colors distinguish night and day measurements (grey for nighttime, colored for daytime).

Discussion

- As correction factors change with time, the drift could not corrected during the night, thus the bacterial signal during period is unreliable.
- High quality daytime measurements of *P. aureofaciens* isoto signatures fall into the expected ranges (Fig. 6), but remain q variable within each day.

Fig. 6 – Dual isotope plots for $\delta^{15}N^{SP}$ vs $\delta^{18}O$ (left) and $\delta^{15}N^{SP}$ vs $\delta^{15}N$ (right), displaying averaged isotopic signatures of N₂O for each day with error bars. Colored areas indicate expected isotopic signatures for N₂O production pathways (Ni = hydroxylamine oxidation, nD = nitrifier denitrification, hD = heterotrophic denitrification) adapted from Yu et al. (2020).

Materials Science and Technology

Universität Basel

	Summary / Outlook
to Irift	 N₂O isotopic species were continuously analyzed with QCLAS by culturing the N₂O-reductase-lacking denitrifier, <i>P. aureofaciens</i>.
was	 As measurements need to be referenced to calibration gases, only daytime measurements can be considered further.
and and	• Isotopic signatures from <i>P. aureofaciens</i> fall into the expected ranges for heterotrophic denitrification (<i>i.e.</i> , $\delta^{15}N^{SP} \approx 5$ to -8 ‰).
	 For further experiments, the measurements will be automated to have accurately standardized data day and night.
	 We will explore other factors, <i>e.g.</i> growth rate, cell density, oxygen supply.
	Next steps
time.	 Compare bacteria that use similar Nor (i.e. NorB) enzymes and different Nir (i.e. NirS vs. NirK) enzymes (Fig. 7). This would be possible by comparing <i>Pseudomonas aureofaciens</i> with <i>Pseudomonas chlororaphis</i>: a similar SP would be expected vs. different δ¹⁵N and δ¹⁸O signatures and fractionation factors.
t be this	$NO_3^- \xrightarrow{\text{Nitrate}} NO_2^- \xrightarrow{\text{Nitrite}}_{\substack{\text{reductase}\\nirs}\\nirk} NO \xrightarrow{\text{Nitric oxide}}_{norB} N_2^- \xrightarrow{\text{Nitrous oxide}} N_2^-$
opic Juite	 Fig. 7 – Denitrification pathway with the concerned enzymes Investigate other N₂O production pathways, including hydroxylamine oxidation reactions, ammonia oxidation by archaea and bacteria, fungal denitrification.
ay 1	 Explore isotopologue-specific fractionation factors using biochemical kinetic modelling.
2 3 4 5	- Measure doubly-substituted isotopologues $(^{15}N^{16}O, \ ^{14}N^{15}N^{18}O$ and $^{15}N^{14}N^{18}O)$ from all biogenic N_2O sources
	Contact: Noémy Chénier Empa – Group
20	noemy.chenier@empa.ch Emission & Isotopes
eraged otopic	■ 光 存 ■ 二 代 存 ■ 二 代 示 で Find the abstract information online