Azimuthal Anisotropy in the Eastern Alpine Crust from Ambient Noise Tomography

E.D. Kästle (Freie Universität Berlin) and the AlpArray Working Group

EGU 2023

Freie Universität

Deutsche Forschungsgemeinschaft

DFG

Tectonic setting

stationSwathD station

emanuel.kaestle@fu-berlin.de

RRAY

Deutsche Forschungsgemeinschaft German Research Foundation 2

Ambient noise tomography

RRAY

4D DEG Deutsche Forschungsgemeinschaft German Research Foundation

Ambient noise tomography

Reversible jump Markov Chain Monte Carlo \rightarrow model search to find a probability distribution of models that fit the data

Each Voronoi cell has 3 parameters: **one isotropic** (c_iso) Rayleigh phase velocity and **two anisotropic** (c1,c2) parameters.

$$c^{AA} = c^{iso} \left[1 + c_1 \cos(2\Phi) + c_2 \sin(2\Phi)\right]$$

Freie Universität

Deutsche Forschungsgemeinschaft German Research Foundation

Reversible jump Markov Chain Monte Carlo \rightarrow model search to find a probability distribution of models that fit the data

Each Voronoi cell has 3 parameters: **one isotropic** (c_iso) Rayleigh phase velocity and **two anisotropic** (c1,c2) parameters.

$$c^{AA} = c^{iso} \left[1 + c_1 \cos(2\Phi) + c_2 \sin(2\Phi)\right]$$

Freie Universität

Deutsche

Forschungsgemeinschaft

DFG

Reversible jump Markov Chain Monte Carlo \rightarrow model search to find a probability distribution of models that fit the data

Alternative models that fit the data equally well

Average model and model standard deviation

Azimuthal anisotropy

Rayleigh phase velocity at 15s

EG Deutsche Forschungsgemeinschaft German Research Foundation

Azimuthal anisotropy

Freie Universität

Deutsche Forschungsgemeinschaft

DFG

Ambient noise tomography

Depth inversion

Vertical profile through phase-velocity maps

Depth inversion

emanuel.kaestle@fu-berlin.de

MB 4D

DFG

Deutsche Forschungsgemeinschaft

Depth inversion

14

emanuel.kaestle@fu-berlin.de

Deutsche Forschungsgemeinschaft

16

emanuel.kaestle@fu-berlin.de

Freie Universität

DFG Deutsche Forschungsgemeinschaft

emanuel.kaestle@fu-berlin.de

MB 4D

19

20

Resolution tests

3-layer model of anisotropy – synthetic test

MB 4D

Sources of anisotropy

Intrinsic anisotropy

- Lattice-preferred orientation (LPO) / crystallographic preferred orientation (CPO) of minerals
- Fast axis typically parallel to main strain direction (olivine, amphibole, mica, ...)
- Some exceptions (e.g. pyroxene)

Apparent anisotropy

- Shape-preferred orientation (SPO) of grains
- (fluid filled) microcracks
- Layering
- Faults
- Foliation
- General: chemical & structural heterogeneities

Freie Universität

Deutsche

Forschungsgemeinschaft

DFG

Sources of anisotropy

Intrinsic anisotropy

- Lattice-preferred orientation (LPO) / crystallographic preferred orientation (CPO) of minerals
- Fast axis typically parallel to main strain direction (olivine, amphibole, mica, ...)
- Some exceptions (e.g. pyroxene)

Apparent anisotropy

- Shape-preferred orientation (SPO) of grains
- (fluid filled) microcracks
- Layering
- Faults
- Foliation
- General: chemical & structural heterogeneities

 For any effective anisotropic medium, a finely layered, purely isotropic counterpart can be found (Fichtner et al., 2013).

Sources of anisotropy

Intrinsic anisotropy

- Lattice-preferred orientation (LPO) / crystallographic preferred orientation (CPO) of minerals
- Fast axis typically parallel to main strain direction (olivine, amphibole, mica, ...)
- Some exceptions (e.g. pyroxene)

Apparent anisotropy

- Shape-preferred orientation (SPO) of grains
- (fluid filled) microcracks
- Layering
- Faults
- Foliation
- General: chemical & structural heterogeneities

 90° ambiguity for surface-wave anisotropy for some media (Xie et al., 2015).

Conclusions

- At least two layers of anisotropy in the eastern Alps.
- Orogen parallel flow north of the Alps in the lowermost crust / uppermost mantle.
- Upper crustal anisotropy may be strain parallel (eastward extrusion).
- Anisotropy tends to align with the main fault structures.

Freie Universität

• A combination of methods may be able to resolve some of the ambiguities (surface-waves and receiver functions).

Deutsche

Forschungsgemeinschaft

DFG

Thank you for your attention

Anisotropic dispersion curve calculations:

https://github.com/ekaestle/pysurf96aa

Deutsche Forschungsgemeinschaft

DFG

