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1. Constrain bedload transport intermittency factors in modern rivers Kor L =i BQART approach (Ry, = 0.16)
2. Quantitatively link these with historical precipitation and flood records > i ' v Delta a0oroach
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Calculations show Corinth rivers are extremely intermittent, with median If= 3.23x1 0'4.

This implies that, on average, rivers only transport bedload sediment 0.03% of the time, — ‘ - : :
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To calculate the bedload intermittency factor we need t
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Rivers in the Gulf of Corinth are extremely intermittent, requiring only 3 hours of bedload

transport per year to fulfil their annual budgets. They are driven by 1 rainfall event every 5 -
Rainfall frequency-magnitude for

. . . 'l N all weather stations, and 6 years.
ﬁdipal muliiregressionat empirical modet fo esimate suspended thresholds in present and future Rainfall events causing bedload transport are extreme (> 50 mm/day) and result in large
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