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INTRODUCTION
Modelling environmental concentrations of pesticides at landscape-level is of growing interest for

pesticide registration and product stewardship. This includes decision making as well as the design of

higher-tier monitoring studies and the optimal selection of mitigation measures. Typically, processes such

as runoff, drainage, and leaching are well represented in existing modelling concepts at point and

landscape scale. However, the modelling of off-target spray drift is often neglected or simplified at the

landscape-level scale due to its high computational costs. Attempts at implementing spray drift into

landscape-level modelling often rely on an external calculation of drift curves with pesticide masses

added directly to the channel network. Although this approach enables the estimation of drift entries

based on the proximity of source areas to water bodies, it may be insufficient in representing the spatial

distribution of spray drift depositions in the landscape.

▪ Enable landscape-level spray drift prediction, taking

typical short-term weather conditions into account

▪ Development and validation of a spray drift model for

ground application using independent observation data

▪ Enable a modular design as standalone or in

combination with other modelling approaches:

▪ Landscape-level assessment (e.g. SWAT)

▪ Exposure assessment in combination with

ecotoxicological modelling

1.

Model Inputs

▪ Weather conditions ▪ Drop size distribution
▪ Operational 

characteristics

▪ Physio-chemical properties 

of spray solution

a) Mechanistic Droplet Model

▪ Simulates droplet kinetics and evaporation

▪ Predicts dynamic droplet trajectory

b) Micro-Climate Model

▪ Indirect interaction between droplets

▪ Simulates mass and energy balance

2.

3D Gaussian Diffusion Model

▪ Longitudinal advection

▪ Vertical, lateral and longitudinal dispersion

Drift Pattern Prediction

▪ Mass flux function of concentration and 

vertical droplet velocity

▪ Base model resolution of 1x1 m

3.

4.

Model Output

▪ Drift Curve Prediction ▪ Landscape-level drift prediction
5.

OBJECTIVES

MATERIAL & METHODS
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▪ Sensitivity analysis indicates coherent and comprehensible model behavior

▪ The droplet and atmospheric dispersion drift model was successfully validated against two

field trials, with overall very good model performance

▪ Assessment of dominant spray drift factors at landscape scale is ongoing

▪ Landscape-level assessment of pesticide exposure in waterbodies is planned employing

SWAT+ to combine drift and other transport processes (i.e. drainage, runoff, or lateral flow).

Fig. 2: Input parameter ranking from most sensitive to least sensitive based on the RSR. Fig. 3: Observed and simulated drift fractions for the 7 application scenarios, with study 1 on the left and study 2 on the right.

Fig. 1: Schematic representation 

of the diffusion model [1].

▪ Mean droplet diameter and spray boom height are the most

sensitive input parameters

▪ Low sensitivity to characteristics of active ingredient

▪ High variability of parameter sensitivity between application

scenarios for mean droplet size, temperature, wind speed,

horizontal dispersion, and humidity

Study 1:

▪ Very good model performance 0.921 (R²) and 0.273 (RSR) against observation data

▪ Systematic model overprediction of the XR11003 scenario

▪ Agreement between DG nozzle and XR nozzle in the observations is unrealistic and

potentially associated with study design

Study 2:

▪ Very good model performance 0.928 (R²) and 0.264 (RSR) against observation data

One-At-a-Time Sensitivity Analysis:

▪ Variation of 23 input parameters by ±25%, for all 7 application scenarios

▪ Comparison to reference run using the root mean square error -

observations standard deviation ratio (RSR)

Model Setup & Validation:

▪ Model inputs based on two field-scale spray drift studies for ground

application covering a wide range of drift potentials

▪ Canopy height, leaf area index and surface roughness height based on

literature research

▪ Vertical and horizontal wind standard deviation parameterized based on

two spray drift studies

Study 1 Study 2

Study 1 [2] Study 2 [3]

▪ XR nozzle (high drift potential)

▪ DG nozzle (medium-low drift 

potential) 

▪ AIXR nozzle (low drift potential)

▪ Four replicates per nozzle

▪ TTI nozzle (very low drift potential)

▪ Four identical test plots

▪ Three replicates per test plot
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