
Towards Robust Parameterizations in Ecosystem-level 

Photosynthesis Models 

Shanning Bao1,2, Nuno Carvalhais2,3,4, Lazaro Alonso2, Siyuan Wang2, Johannes Gensheimer2, Ranit De2, 

Jiancheng Shi1 

1. National Space Science Center, China Academy of Sciences, 100190, Beijing, China 

2. Max-Planck Institute for Biogeochemistry, 07745, Jena, Germany 

3. Departamento de Ciências e Engenharia do Ambiente, DCEA, Faculdade de Ciências e Tecnologia, FCT, 

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal 

4. ELLIS Unit Jena, 07745, Jena, Germany 

 

Photosynthesis model parameters represent vegetation properties or sensitivities of photosynthesis processes. As 

one of the model uncertainty sources, parameters affect the accuracy and generalizability of the model. Ideally, 

parameters of ecosystem-level photosynthesis models, i.e., gross primary productivity (GPP) models, can be 

measured or inversed from observations at the local scale. To extrapolate parameters to a larger spatial scale, 

current photosynthesis models typically adopted fixed values or plant-functional-type(PFT)-specific values. 

However, the fixed and PFT-based parameterization approaches cannot capture sufficiently the spatial variability 

of parameters and lead to significant estimation errors. Here, we propose a Simultaneous Parameter Inversion 

and Extrapolation approach (SPIE) to overcome these issues1.   

SPIE refers to predicting model parameters using an artificial neural network (NN) constrained by both model 

loss and ecosystem features including PFT, climate types, bioclimatic variables, vegetation features, atmospheric 

nitrogen and phosphorus deposition and soil properties. Taking a light use efficiency (LUE) model2 as an 

example, we evaluated SPIE at 196 FLUXNET eddy covariance flux sites. The LUE model accounts for the 

effects of air temperature, vapor pressure deficit, soil water availability (SW), light saturation, diffuse radiation 

fraction and CO2 on GPP using five independent sensitivity functions. The SW was represented using the water 

availability index3 and can be optimized based on evapotranspiration. Thus, we optimized the NN by minimizing 

the model loss which consists of GPP errors, evapotranspiration errors, and constraints on sensitivity functions2. 

Furthermore, we compared SPIE with 11 typical parameter extrapolating approaches, including PFT- and 

climate-specific parameterizations, global and PFT-based parameter optimization, site-similarity4, and 



regression methods using Nash-Sutcliffe model efficiency (NSE), determination coefficient (R2) and normalized 

root mean squared error (NRMSE).  

The results in ten-fold cross-validation showed that SPIE had the best performance across various temporal and 

spatial scales and across assessing metrics. None of the parameter extrapolating approaches reached the same 

performance as the on-site calibrated parameters (NSE=0.95), but SPIE was the only approach showing positive 

NSE (=0.68) in cross-validation across sites. Moreover, the site-level NSE, R2, and NRMSE of SPIE all 

significantly outperformed per biome and per climate type. Ranges of parameters were more constrained by 

SPIE than site calibrations.  

Overall, SPIE is a robust parameter extrapolation approach that overcomes strong limitations observed in many 

of the standard model parameterization approaches. Our approach suggests that model parameterizations can be 

determined from observations of vegetation, climate and soil properties, and expands from customary clustering 

methods (e.g., PFT-specific parameterization). We argue that expanding SPIE to other models overcomes current 

limits in parameterization and serves as an entry point to investigate the robustness and generalization of different 

models.  
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