Developing generic reservoir operating rules for inclusion in the national-scale hydrological modelling of Great Britain **S. Salwey¹**, G. Coxon^{1, 3}, F. Pianosi^{2, 3}, R. Lane⁴, M.B. Singer^{5,6,7}, C. Hutton⁸

National-Scale Detection of Reservoir Impacts Through Hydrological Signatures Salwey et al. (2023) [in review, WRR]

5 hydrological signatures:

Water **Flow Duration** Balance Curve Streamflow Low Flow Elasticity Variability Dry/ Wet Runoff Ratio +Water Balance Water Surplus

0.2 -

0.0

ິຍ.1

7600

2019

Water Deficit

Aridity index (PE/P)

0.6

MPR Natural Model

Observed Flow

08

The UK Reservoir Inventory contains 273 reservoirs, of these:

- 76% are designed for water resource management
- 90% of reservoirs were constructed by 1975
- The average reservoir capacity is 24 Million Cubic Metres (MCM)

Hydrological signatures can be used to identify reservoir-induced flow alteration across Great Britain

- The degree of alteration depends on a catchments contributing area and normalised upstream capacity
- Application to 186 catchments across Great Britain finds that reservoirs often induce loses in the water balance and reduce flow variability

2020

Segmentation of the Flow **Duration Curve**

¹ School of Geographical Sciences, University of Bristol, Bristol, United Kingdom, ² Department of Civil Engineering, University of Bristol, Bristol United Kingdom, ³ Cabot Institute, University of Bristol, Bristol, Bristol, United Kingdom, UK Centre for Ecology & Hydrology, Wallingford, United Kingdom, ⁵ School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom, ⁶ Earth Research Institute, University of California Santa Barbara, Santa Barbara, USA, ⁷ Water Research Institute, Cardiff University, Cardiff, United Kingdom, ⁸ Wessex Water Services Ltd, Bath, United Kingdom.

Motivation

Key Aim: To develop a new set of simple reservoir operating rules for integration into national-scale hydrological model simulations across Great Britain

Model Setup (Natural Parameters)

- Multiscale Parameter Regionalisation (MPR) is used to identify nationally consistent and hydrologically meaningful values of DECIPHeR's 7 natural parameters
- Simulations are carried out across the UK Benchmark Network and evaluated with the non-parametric KGE (Pool et al. (2017)
- The top 100 global parameter combinations are then applied in the parameterisation of the reservoir catchments

This technique ensures that the inflow to a reservoir has not been calibrated or biased towards an impacted timeseries

a) Hanasaki et al. (2006) (non-irrigation reservoirs)

storage(t+1) = storage(t) + inflow(t) - spill(t) - release(t) where release(t) = mean inflow

b) New generic operating rules (designed for small water resource reservoirs)

storage(t+1) = storage(t) + inflow(t) + (*pumped_storage*(t)) - compensation_flow(t) - abstractions(t) - spill(t)

Initial Case Study: Haweswater Reservoir

KGE components Non-Flow Water Simulation Duration Correlation Parametric Balance Error (KGE) Curve No 4.508 -2.57 0.68 0.41 Reservoir 0.50 1.03 0.83 0.52 Reservoir

Model Evaluation

 Non-parametric KGE • Hydrological Signatures

Performance will also be evaluated during the onset, duration and recovery from drought and across varying flow conditions

Conclusions:

- Without reservoir representation, large-scale hydrological modelling across Great Britain misses several key processes in impacted catchments
- Most pre-existing reservoir rules are designed for reservoirs unlike those found in Great Britain
- New simple reservoir operating rules show promising results in initial hydrological model simulations downstream of reservoirs in Great Britain

References

Coerver, H.M., Rutten, M.M. and Van De Giesen, N.C., 2018. Deduction of reservoir operating rules for application in global hydrological models. Hydrology and Earth System Sciences, 22(1), pp.831-851. Hanasaki, N., Kanae, S. and Oki, T., 2006. A reservoir operation scheme for global river routing models. Journal of Hydrology, 327(1-2), pp.22-41. Pool, S., Vis, M. and Seibert, J., 2018. Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency. *Hydrological Sciences Journal*, 63(13-14), pp.1941-1953. Turner, S.W., Doering, K. and Voisin, N., 2020. Data-driven reservoir simulation in a large-scale hydrological and water resource model. Water Resources Research, 56(10), p.e2020WR027902. Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri, G. and Wheater, H., 2019. Representation and improved parameterization of reservoir operation in hydrological and land-surface models. Hydrology and Earth System Sciences, 23(9), pp.3735-3764.

