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Aims

MethodsField Site

Discussion and Conclusions

A1) Develop a novel geological tidal current
velocity proxy based on textural and structural
sedimentary data collected in the field and the
literature.

A2) Apply this proxy to validate global tidal model
simulations for the Carboniferous period and
adjust where necessary using OTIS.
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Importance: The tides modulate key Earth systems
and processes including Earth – Moon orbital
evolution [1], meridional overturning circulation [2],
biogeochemical cycles [3], and biological evolution
[4].

Problem: Understanding tides through geological
history is largely facilitated with numerical model
simulations. But they are often poorly constrained
due to a paucity of available proxy data.

Solution: Models can be validated with
sedimentary data. Tidal deposits e.g., rhythmites
are extensively used to approximate palaeotidal
periodicities and Earth – Moon geochronology.
However, the use of sedimentary texture and
structures as proxies for local hydrodynamic
conditions is largely overlooked.

Empirical research [5, 6, 7] has established that
equilibrium current ripple dimensions are dependent
on flow velocity and time. In a tidal environment
where time is constrained to ~6 hours, ripple
dimensions could be used to approximate flow
velocity. Grain size also reflects local current
velocity [8].

320 Ma

[9]

Location: Wisemans Bridge, South Wales, UK 
Group: South Wales Coal Measures Group
Age: ~318 Ma
Type: Heterolithic tidal rhythmites

~2 m

No significant post-depositional effects (e.g.,
compaction) affect the bedform-derived current
velocity estimates of the Wiseman’s Bridge site.

Field data velocity estimates in agreement =
methodology validated.

Simulation generally underestimates tidal current
velocity, though refinement and further
comparisons are required.

Bedform methods are to be expanded to include
climbing ripples using data collected in Grab-all
Bay, Cork Harbour, Ireland.

Literature Results

Ripple Analysis: Current velocity
estimated using separate ripple height
(H) and length (L) development
predictors.

Grain Size Analysis: Current speed estimated using
rearranged Quadratic Friction Law to compute current speed
using Shield’s Parameter and bottom shear stress.

Post-depositional effects investigated
by comparing theoretical ripple
development to field data.

Field Results

With thanks to Dr Iael Perez(1) for assistance with plotting figures.

Lithofacies analysis and sedimentary log of Wisemans 
Bridge field site. 

Ripple H and L velocity 
estimates for VFS.

Grain sizes measured in
thin section (field data, →)
or extracted from lithofacies
analyses (literature data).

Bedform measurement protocol:

Max, med, and min grain sizes from lithofacies analyses used
to provide range of plausible current speed estimates.

Proxy locations were mapped onto age appropriate
palaeogeographical reconstructions.

Simulations cannot be compared to field data as they 
depict Wisemans Bridge as a terrestrial environment.

jennifer.hewitt@bangor.ac.uk @JenniferMHewitt
Simulation Comparison

Reconstruction inaccuracy: 73% of literature proxy
locations are reconstructed inaccurately (i.e., depicted
as terrestrial environments).

Current velocity estimates compared to simulation
results where palaeoenvironments plotted as marine.

D50 grain size velocity estimates 
with (error bars correspond to D90 estimates).  

Sample 163S Image 2. xp.

• 30 lithofacies across 15 locations used in analysis
• Literature proxies span entire Carboniferous period
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Simulated current velocity (orange) compared to
literature grain size velocity range estimates (purple).

Numerical model simulation generally underestimated
current velocity.

Where sufficient data were available, a range of grain
size-based velocity estimates were made. In lieu of a
range, singular velocity estimates were made based on
maximum reported grain size.

Proxy locations mapped (→) and both proxy-derived and
simulated current velocity estimations compared.
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