Quantifying the added value of underway pCO₂ data from sailboats

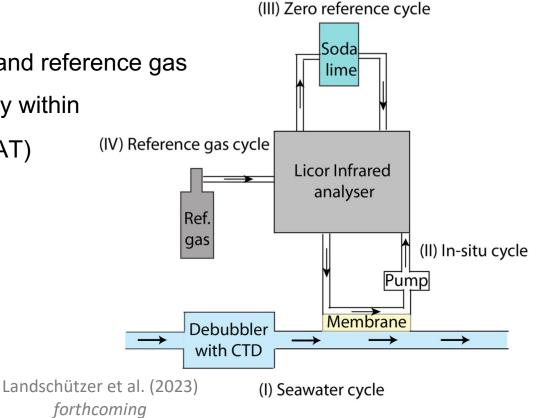
Jacqueline Behncke^{1,2}

Peter Landschützer^{1,3}

 ¹ Max Planck Institute for Meteorology
 ² International Max Planck Research School on Earth System Modelling
 ³ Flanders Marine Institute

April, 28th 2023

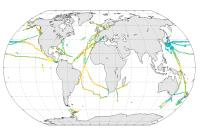
IMPRS on Earth System Modelling INTERNATIONAL MAX PLANCK RESEARCH SCHOOL


Supplementary material

- Measurement system
- Overview about sailboat pCO₂ observations
- How to reconstruct missing pCO₂ values?
- Relative difference between flux estimates (w./wo sailboat data)
- Sensitivity of air-sea CO₂ flux to measurement uncertainty

Measurement system

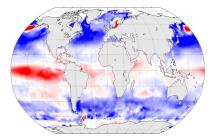
- OceanPack[™] RACE system
- Two point calibration: zero CO₂ and reference gas
- Expected measurement accuracy within
 ± 5 µatm (flags C and D in SOCAT)

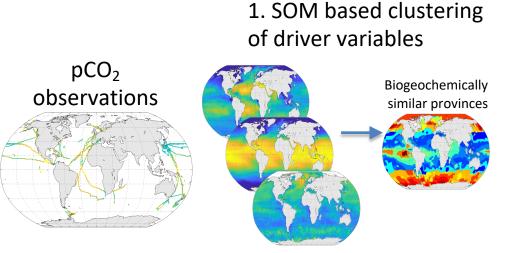

Overview about sailboat pCO₂ observations

- 5 races with highperformance sailyacht
- incl. Antarctic circumnavigation
- 5 transfers

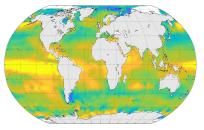
2018 - 2022
129 days
(recurrent races)

Sailboat route covered 7.0 % in the North Atlantic 2.6 % in the Southern Ocean ... 10.5 % along Subantarctic Front ... 9.1 % along Northern Boundary ... 2.0 % along Polar Front


How to reconstruct missing pCO₂ values?

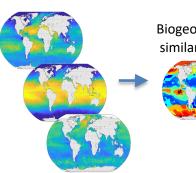

SOM-FFN

SOM = self-organizing-map (classification)


FFN = feed-forward neural network (regression)

SOM clusters the ocean

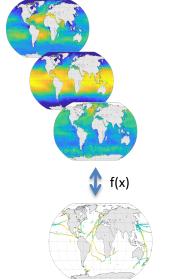
reconstructed pCO₂ maps

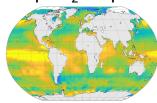


...

FFN estimates missing pCO₂ values

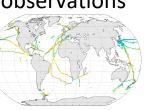
1. SOM based clustering of driver variables


pCO₂ observations


Biogeochemically similar provinces

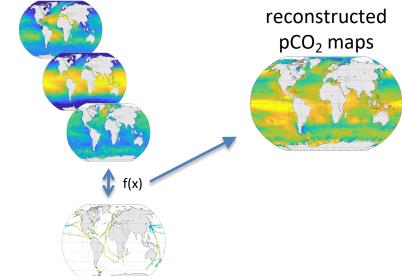
2. FFN: interpolation using relationships between drivers and observed pCO_2

...

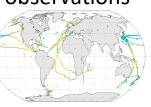

reconstructed pCO₂ maps

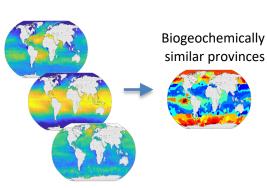


FFN estimates missing pCO₂ values

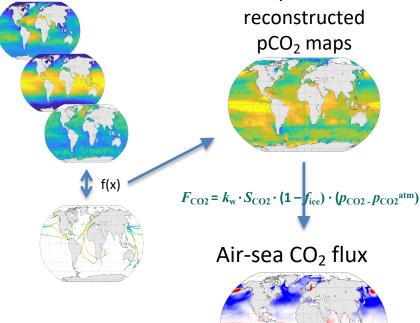

1. SOM based clustering of driver variables

pCO₂ observations

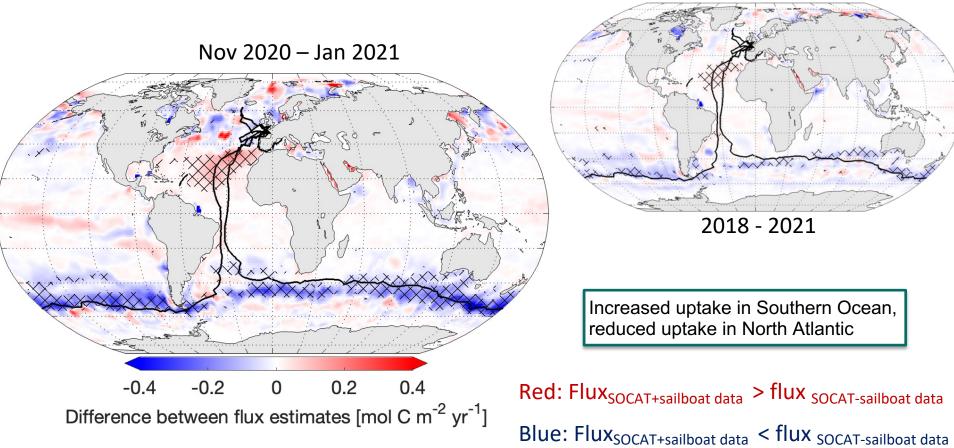

2. FFN: interpolation using relationships between drivers and observed pCO₂

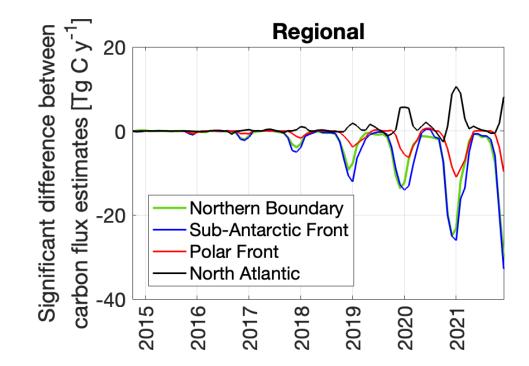


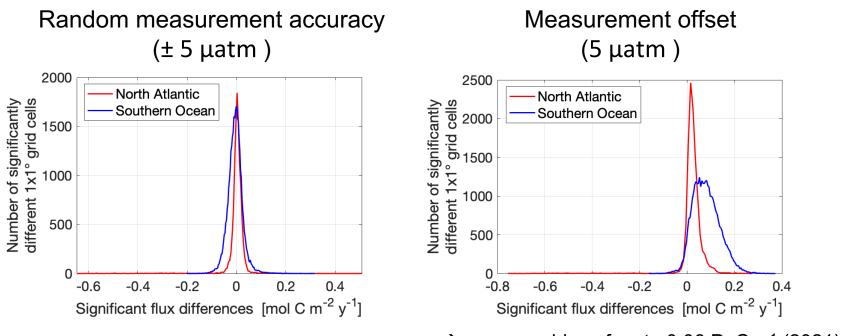
Air-sea CO₂ flux calculation


1. SOM based clustering of driver variables

pCO₂ observations




2. FFN: interpolation using relationships between drivers and observed pCO₂


Relative difference between flux estimates (w./wo sailboat data)

Relative difference between flux estimates (w./wo sailboat data)

Sensitivity of air-sea CO₂ flux to measurement uncertainty

- \rightarrow no significant effect basin-wide
- \rightarrow effect on high-frequency local fluxes

→ causes a bias of up to 0.06 PgC y⁻¹ (2021) = 2.4 % of global uptake of 2.51 PgC y⁻¹ (2021)

North Atlantic mean: 0.02 mol C m⁻² y⁻¹ Southern Ocean mean: 0.08 mol C m⁻² y⁻¹