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Increasing polar heating depth and strength reduces polar vortex variability, * In our idealised model, introduction of polar
P reflected in lower SSWV frequency across the experiments (see Fig 3), for heating weakens the stratospheric polar
which we propose the following mechanism: vortex, consistent with other recent studies
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*In comprehensive model studies, such as PAMIP and CMIP, there are zonal Wind (m s™*) o Response (m s77) | )
diverging stratospheric responses to future Arctic sea ice loss and * polar heating modifies the meridional temperature gradient (AT,) |
climate change, respectively .:ﬁ hfatlng dﬁpth/strength increases, AT, weakens at increasingly higher levels in
e troposphere
* There is large intermodel spread in the depth (and strength) of the
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Fig 2: control and increasingly deep polar heatilng experiments overlaid with climatological time and
zonal mean zonal wind contours (10 ms™ spacing, 0 ms™ thick line). Refractive index is wave-2. EP
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