# Plasma-neutral gas interactions in various space environments beyond simplified approximations:



**M. Yamauchi** (IRF), J. De Keyser (BIRA-IASB), and the Voyage 2050 White Paper team

### Why ion-neutral interaction?

Observations of partially ionized plasma in space suggest that the present knowledge on **plasmaneutral gas interactions** is far from complete, particularly for **low energy**.

- ⇒ ion-neutral cross-section in space cannot be quantitatively measured in laboratory !
  - Low-energy particles are easily affected by the environment, particulary by (a) tenuous gas with gradient (b) very low temperature (c) micro-gravity.
  - (2) Many sources of external energies into the system that are high compared the neutral/ion energy (e.g., E, UV, radiation, electron, cosmic ray) and convoluted.

| 1 | M. Yamauchi    | M. Yamauchi      |
|---|----------------|------------------|
| 1 | Kiruna, Sweden | 2 Kiruna, Sweden |
|   |                |                  |

## Why ion-neutral interaction?

⇒ ion-neutral cross-section in space cannot be quantitatively measured in laboratory !

We then have the following questions:

- Physical aspect (Theme A): What is the actual neutral behaviors in a tenuous plasma (upper thermosphere and exosphere, comet, interstellar medium), particular for lowenergy? => this talk
- Chemical aspect (Theme B): How organic matters are formed in low-density and low-temperature environments (titan ionosphere, comet, interstellar medium), where neutral-neutral interactions is less efficient than neutral-ion interactions ?

   → not today

### Theme (A): physical aspect

How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species?

- (A1) Impact of ion-neutral energy exchange on long-term evolution of planet, comet, ring, etc.
- (A2) Structures and variability of the upper thermosphere and exosphere
- (A3) Energy cascade in partially ionized plasma with large gradients or layered structures
- (A4) Role of ion-neutral momentum transfer in the super-rotation and cold ion flows

| 例析 |  |  |  |
|----|--|--|--|
| RF |  |  |  |

M. Yamauchi Kiruna, Sweden IRE



#### Here, we assume **M-class / F-class payload**. • M-class dedicated mission (Earth/Venus)

F-class bedicated mission (Earth/Venus)
 F-class payload onL-missions (> 2 AU)

| Mission destination               | (1) T    | (2) n    | (3) g     | A1  | A2  | A3  | A4  | mother<br>mission* <sup>2</sup> |
|-----------------------------------|----------|----------|-----------|-----|-----|-----|-----|---------------------------------|
| Interstellar/Oort cloud           | very low | very low | very low  | х   | -   | х   | (x) | LL or L                         |
| Ice Giant atmosphere              | very low | medium   | high      | x   | х   | х   | x   | LL                              |
| plumes (Enceladus, Io,<br>Europe) | low      | medium   | medium    | х   | х   | x   | (x) | L or LL                         |
| Titan around exobase              | low      | medium   | high      | х   | х   | х   | (x) | L or LL                         |
| comet rendezvous                  | wide*1   | wide*1   | low       | x   | x   | x   | x   | L                               |
| deep inside gas giant             | medium   | high     | very high | (x) | -   | (x) | -   | L                               |
| artificial comet                  | medium   | high     | medium    | х   | -   | х   | (x) | M, F                            |
| Earth around exobase              | high     | medium   | high      | x   | x   | x   | x   | M, F                            |
| Venus around exobase              | high     | medium   | high      | x   | x   | x   | x   | M, F                            |
| planetary L2 comp.                | (mixed)  | low      | very low  | х   | (x) |     | (x) | < M                             |

\*1 It ranges from very low to high along the orbit. \*2 LL: Need to collaborate with other agency (for cost or RTG).

| (and the second s |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IRF 6 Kiruna, Swed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

#### What to measure?

- Basic parameters that must be measured (mandatory):
- (1) ion energy/velocity distribution (including density)
- (2) neutral energy/velocity distribution (including density)(3) composition if posasible

 $\label{eq:possible parameters that influence the interaction (optional \ measurements):$ 

- (1) Temperature
- (2) Density and ionization ratio (including their gradient)
- (3) Gravity
- (4) External free energy (electron, cosmic ray, E-field, B-field, EM wave)

note. these extreme conditions are difficult to achieve by laboratory experiments