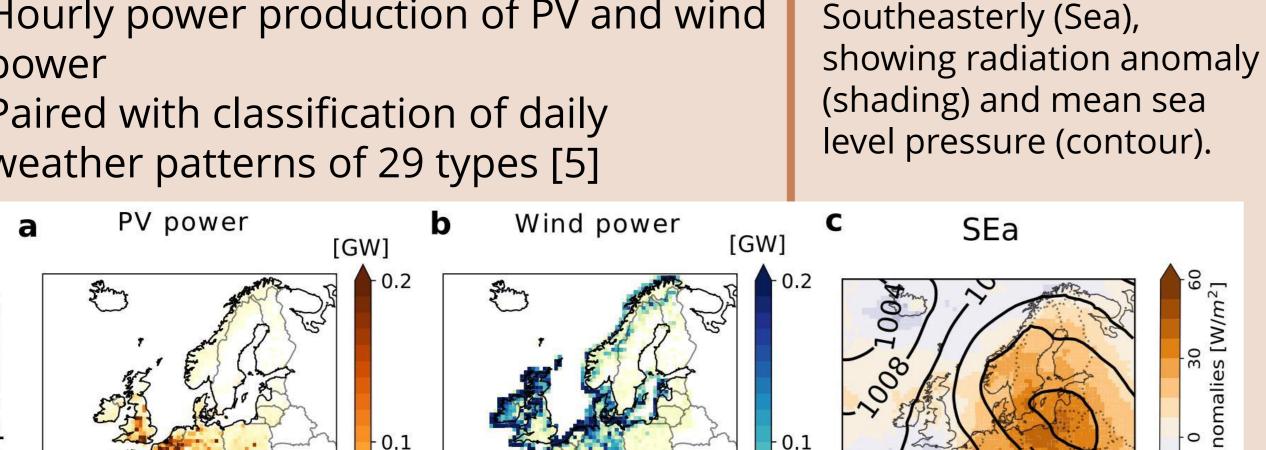


Motivation


- Higher share of wind and photovoltaic (PV) power in Europe in 2050 to meet the climate-neutral target
- The ratio of PV to wind power installation can also change in the future
- \Rightarrow Weather patterns associated with extremes in renewable energy can be different compared to present

Research question

- Which pairs of weather pattern extremes in power production are sensitive to the installed capacity?
- Seasonal differences and the duration dependency of these association?

2. Method

- Reanalysis data COSMO-REA6 hourly with 6 km horizontal resolution 1995— 2017 [1]
- Simulation PV [2] and wind power capacity factor
- Future installation (2050) from CLIMIX [3]: 870 GW of PV power, 440 GW of wind power
- Present-day installation using scaling factor: 120 GW of PV power, 167 GW of wind power [4]
- \Rightarrow Hourly power production of PV and wind power
- \Rightarrow Paired with classification of daily weather patterns of 29 types [5]

- Compared to presentday installation, total in the future installation have similar sign but smaller magnitude
- Highest total with patterns with westerly wind
- Patterns associated with lowest total the installed capacity
- Dark doldrum (low in both PV and wind power production), e.g., Ws, associated with the lowest total production in the future installation

Weather dependency of European wind and photovoltaic power production for present and future installations

Linh Ho-Tran^{1*} and Stephanie Fiedler^{1,2}

¹ University of Cologne, Institute of Geophysics and Meteorology, Cologne, Germany ² now: GEOMAR Helmholtz Centre for Ocean Research Kiel & Faculty for Mathematics and Natural Sciences, Christian-Albrechts-University Kiel, Germany * Contact: Linh.ho@uni-koeln.de

3. Weather pattern differences

production anomalies production associated production depend on

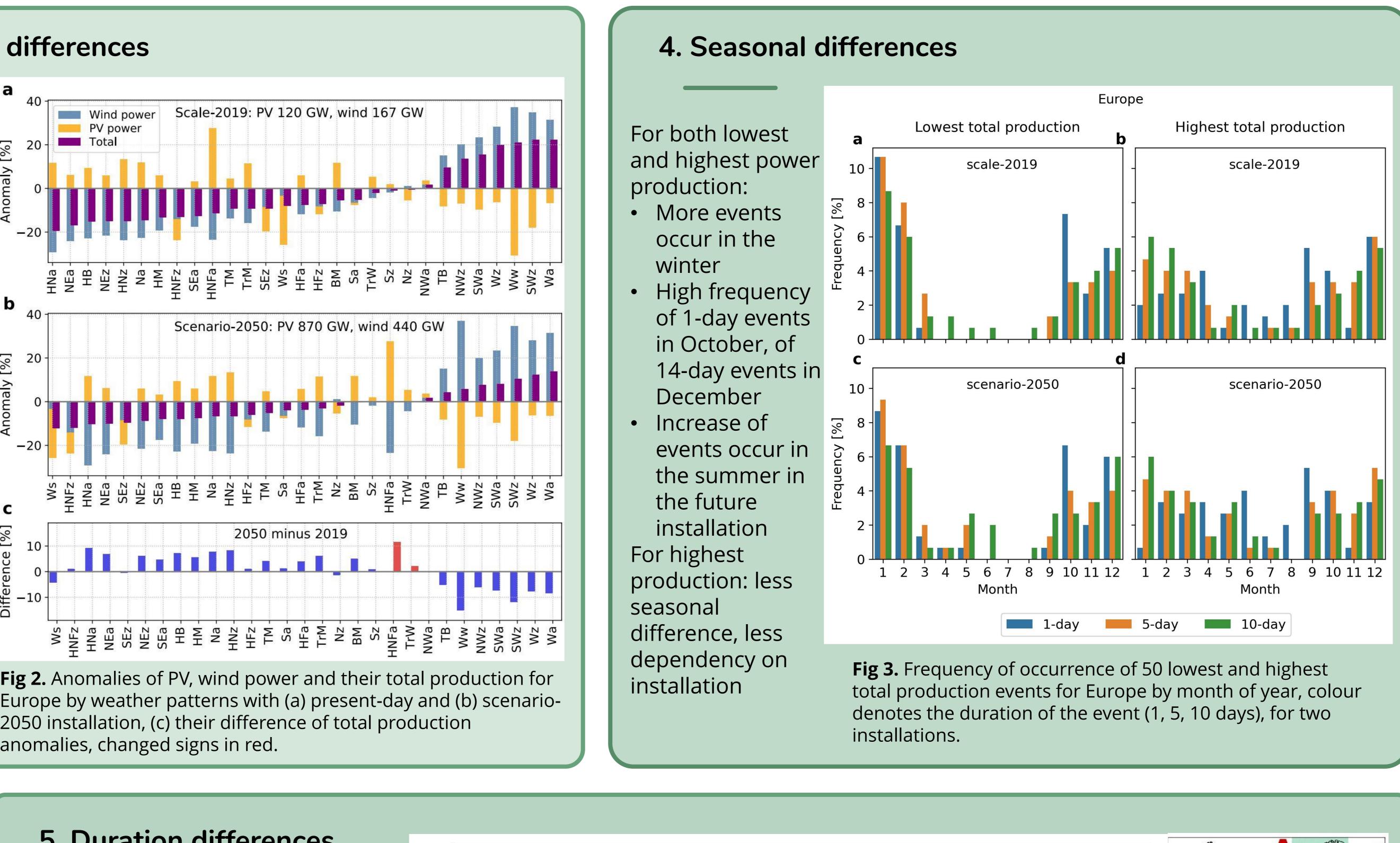
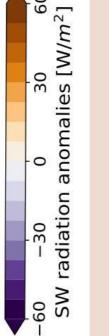



Fig 2. Anomalies of PV, wind power and their total production for Europe by weather patterns with (a) present-day and (b) scenario-2050 installation, (c) their difference of total production anomalies, changed signs in red.

Fig 1. (a,b) Hourly average of power production of PV and wind power 1995— 2017; (c) Climatological mean of Anticyclonic

5. Duration differences

- In the future installation, patterns associated with the lowest total production change more than with the highest production
- Events with duration 1 and 5 days similar to events for hourly production
- SEa (Anticyclonic Southeasterly) associated with 10-day lowest total production for both installations
- In region C and D, the anomalous production events depend on the installation more than region A and B

			Lowest production event			Hig	Highest production event		
		1-day average [TWh/day]		5-day	10-day	/ 1-da	iy 5-day	10-day	
Total 2019	Europe	1.81	HNa	HB	SEa	Wa	Wa	Wz	
	А	0.09	TB	TB	Ws	HB	HM	НМ	
	В	0.54	HM	HM	BM	SW	z SWz	Wz	
	С	0.18	Wa	Wa	Wa	TB	TB	Ws	
	D	0.04	SWz	SWa	SEa	TM	TM	Ws	
Total 2050	Europe	6.74	Ws	SEz	SEa	Wa	Wa	NWz	
	A	0.26	TB	Ws	Ws	HB	HM	НМ	
	В	1.73	HM	HM	BM	Wa	SWz	Wz	
	С	0.95	Wa	Ww	SEa	ТМ	ТМ	Ws	
	D	0.22	Ww	NEa	BM	HN	z TM	Ws	
			-100 -	75 –50) 2 ['] 5 alies [%]	50 75	100	

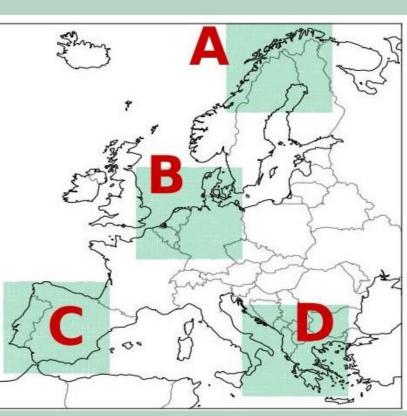


Fig 4. Weather patterns associated with events that have the same pattern for 1, 5, and 10 days, for Europe and four selected regions (above)

6. Conclusion

- Weather patterns with prevailing westerly wind are associated with high total production, regardless of the installed capacity and duration
- Dark doldrum (simultaneously low PV and wind power production) are associated with the lowest hourly total production in the future installation
- Patterns associated with the lowest total production strongly depend on the event duration, except for Anticyclonic Southeasterly (SEa) with 10-day events
- In the future, more extreme events in renewable energy occur in the summer

Insights into weather-driven extremes in **Europe's resources for renewable energy** (Ho-Tran and Fiedler, 2023, in review)

Names of weather patterns

Wa Anticyclonic Westerly, Wz Cyclonic Westerly, Ws South-Shifted Westerly, Ww Maritime Westerly (Block Eastern Europe), SWa Anticyclonic South-Westerly, SWz Cyclonic South-Westerly, NWa Anticyclonic North-Westerly, NWz Cyclonic North-Westerly, HM High over CE, BM Zonal Ridge across CE, TM Low (Cut-Off) over CE, Na Anticyclonic Northerly, Nz Cyclonic Northerly, HNa Icelandic High, Ridge CE, elandic High, Trough CE, **HB** High over the British Isles, **TrM** Trough over CE, NEa Anticyclonic North-Easterly, NEz Cyclonic North-Easterly, HFa Scandina High, Ridge CE, HFz Scandinavian High, Trough CE, HNFa High Scandinavia-Iceland Ridge CE, HNFz High Scandinavia-Iceland, Trough CE, SEa Anticyclonic South Easterly, SEz Cyclonic South-Easterly, Sa Anticyclonic Southerly, Sz Cyclonic Southerly, **TB** Low over the British Isles, **TrW** Trough over Western Europe (CE: Central Europe).

References and Acknowledgement

[1] Bollmeyer et al. (2015). Towards a high-resolution regional reanalysis for the European CORDEX domain. Quarterly Journal of the Royal Meteorological Society, 141(686):1–15.

[2] Frank, C.W., Wahl, S., Keller, J.D., Pospichal, B., Hense, A. and Crewell, S., 2018. Bias correction of a novel European reanalysis data set for solar energy applications. Solar Energy, 164, pp.12-24.

[3] Jerez et al. (2015). The CLIMIX model: a tool to create and evaluate spatially resolved scenarios of photovoltaic and wind power development. Renewable and sustainable energy reviews, 42:1–15.

[4] Audrey Errard, F. D.-A. & Goll, M. Electrical capacity for wind and solar photovoltaic power statistics. https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Electrical_capacity_for_wind_and_solar_

photovoltaic_power__statistics#Increasing_capacity_for_wind_and_solar_over_ the_last_decades (2021). Accessed: 2022-02-08.

[5]] James, P. (2007). An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. *Theoretical and Applied Climatology*, 88(1-2):17-42.

This study has been conducted in the framework of the Hans-Ertel-Centre for Weather Research funded by the German Federal Ministry for Transportation and Digital Infrastructure (grant number BMVI/DWD 4818DWDP5A).