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London Correlations in Magnetosonic Waves

The three familiar MHD wave modes are
derived from linearised Ideal MHD equations

Compressional wave perturbations are given in
terms of displacement:

on=-—-nygV-<§
Oop = —ypoV - §
6By = —ByV-§,

Fast mode

Results in familiar property of magnetosonic waves
* Fast modes correlated magnetic field & density/pressure
« Slow modes anticorrelated magnetic field & density/pressure

.
Often used as atest to classify observed waves

Slow mode
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London -2 Observational Examples: Fast modes
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Solar Wind vao+ (2013, Apy)
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Observational Examples: Slow modes

Slow modes in the

foreshock are rarely
reported
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London Alfvén Field

) ) ] Line Resonance
This property was derived under the assumptions:

* Propagating plane wave

Fast Cavity /
* Real wavenumbers Waveguide Mode
* Infinite uniform plasma

Often not valid in a magnetosphere
where MHD waves are system-scale
& fall in ULF band (~0.1-100mH?2z)

* Inhomogeneous plasmas

« Curvilinear magnetic field geometry

« Standing waves between boundaries

« Evanescent surface modes on boundaries

* Non-Ideal plasma (e.g. temperature anisotropy)

Image Credit
Q. Zong

Quasi-Fast
Surface Mode

Do these alter the correlation between the magnetic field & plasma?
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London Magnetopause Surface Waves

N lonosphere Magnetopause

yreaysolaube

S lonosphere Evanescent
compressional wave

£, 68, 68,

Radially
evanescent

Large scale

across field

(|k, "|~10RE}
L
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for propagation in -4, (out of page) '

Archer+ (2022, JGR)

First considered in simple box models

(Sen, 1963, Phys. Fluids; Chen & Hasegawa, 1974, JGR;
Pu & Kivelson, 1983, JGR; Plaschke & Glassmeier, 2011, AG)

Collective mode consisting of evanescent
magnetosonic wave within magnetosphere

Quasi-fast mode has correlated 6B & én, 6p
(propagating plane wave in infinite compressible plasma)

Reflection by ionosphere results in standing wave
magnetopause surface eigenmode (MSE)

Lowest frequency normal mode of system

Bo,spn
W = k" P < Wy

VHoPo msh

Discovered in multipoint spacecraft observations
(Archer+, 2019, Nature Comm.)

Investigate field & plasma correlations associated with surface waves
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London 2° Parallel Standing Structure o

. . Im{k_YRe{k_} k =0 { ' (a)
In compressible box model magnetosphere for a wide 015_m <Py |
range of plasma S, we calculate for MSE: B

. L . . o1
« Wavenumber k, via magnetosonic dispersion relation =

« Displacement amplitudes for standing wave solutions
(numerical solution)

« Surface wave perturbations
from displacement:
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* B < Pcrit plasma & field remain correlated 005}

* B > Pcrit Plasma & field become anticorrelated

e A>1 plasma becomes incompressible
- - ot

Reversal due to interference pattern in parallel direction 7

Transition occurs at ferjt = 2 {y
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In cold (8 = 0) plasma box model magnetosphere
with background density gradient, we calculate:

* MSE displacement amplitudes using WKB

« Surface wave perturbations, which now include
both compression and advection effects:

on=-nygV:-&—§&-Vn,

5B|| = _BOv : EJ_ — [(EJ_ ; V)BO]"

Advection of non-unform plasma by wave
becomes more important than inherent wave
compression for large density gradients

Leads to anticorrelation of field and density

I
Reversal due to advection of non-uniform plasma
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Perturbations

imperial College ngh -Res Global MHD simulation

5 ensity ) ) Magnetic Field o . : __ Pressure

Previously

«  published
simulation of
'« MSE excited
" * by solar wind

density pulse
(Hartinger+, 2015,
107 GRL; Archer+, 2021,
Nature Comm.)

. Global waves have

. mostly anticorrelated

. field & plasma despite
MSE being a fast mode

w Anticorrelated «

Phase Differences

o Correlated
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High-Res Global MHD simulation

Contributions to wave due to compression (L & ||) and advection (L)

GSM (-5,14,0) R_ GSM (7.5,4.5,0) R
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Compressionl Compression" Advection  Ovwerall

Phase Diff [

Which term dominates the overall wave response?

Magnetic field: Everywhere compression

Plasma: Flanks advection, (wave approx. incompressible as g > 1)
Dayside compression (finite ~0.1 > Brit)

ncm '3]

B [nT]

Both effects discussed important in different regions of system
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Re-evaluated the magnetic field — plasma correlation test for magnetosonic waves

Fast mode Slow mode

Often not true in
the magnetosphere

Examples: fast mode magnetopause surface
waves have anticorrelated plasma & fields for:

Parallel .

tandi Due to interference pattern of
standing displacement along field above Byt
structure

Non-uniform  pye to wave’s advection of plasma
background  with different background dominating
plasma over compression for large gradients

Demonstrated theoretically and in a global simulation

m.archerlO@imperial.ac.uk
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