Re-evaluating the magnetic field – plasma correlations of magnetosonic MHD waves

Surface modes, standing structure, and inhomogeneous plasmas

Martin Archer (m.archer10@imperial.ac.uk)

David Southwood, Michael Hartinger

Imperial College London

Imperial College London Correlations in Magnetosonic Waves

The three familiar MHD wave modes are derived from linearised Ideal MHD equations

Compressional wave perturbations are given in terms of displacement:

$$\begin{split} \delta n &= -n_0 \nabla \cdot \boldsymbol{\xi} \\ \delta p &= -\gamma p_0 \nabla \cdot \boldsymbol{\xi} \\ \delta B_{\parallel} &= -B_0 \nabla \cdot \boldsymbol{\xi}_{\perp} \end{split}$$

Results in familiar property of magnetosonic waves

- Fast modes correlated magnetic field & density/pressure
- Slow modes anticorrelated magnetic field & density/pressure

Often used as a test to classify observed waves

Imperial College London Observational Examples: Fast modes

Imperial College London Observational Examples: Slow modes

Solar Wind Yao+ (2013, ApJ)

Imperial College BUT...

This property was derived under the assumptions:

- Propagating plane wave
- Real wavenumbers
- Infinite uniform plasma

Often not valid in a magnetosphere where MHD waves are system-scale & fall in ULF band (~0.1-100mHz)

- Inhomogeneous plasmas
- Curvilinear magnetic field geometry
- Standing waves between boundaries
- Evanescent surface modes on boundaries
- Non-Ideal plasma (e.g. temperature anisotropy)

Do these alter the correlation between the magnetic field & plasma?

Imperial College London Magnetopause Surface Waves

- Magnetopause First considered in simple box models (Sen, 1963, Phys. Fluids; Chen & Hasegawa, 1974, JGR; Pu & Kivelson, 1983, JGR; Plaschke & Glassmeier, 2011, AG)
 - Collective mode consisting of evanescent magnetosonic wave within magnetosphere
 - Quasi-fast mode has correlated $\delta B_{\parallel} \& \delta n, \delta p$ (propagating plane wave in infinite compressible plasma)
 - Reflection by ionosphere results in standing wave magnetopause surface eigenmode (MSE)
 - Lowest frequency normal mode of system

$$\omega \approx \mathbf{k}_{\parallel} \frac{B_{0,sph}}{\sqrt{\mu_0 \rho_{0,msh}}} \ll \omega_A$$

• Discovered in multipoint spacecraft observations (Archer+, 2019, Nature Comm.)

Investigate field & plasma correlations associated with surface waves

Imperial College London Parallel Standing Structure

In compressible box model magnetosphere for a wide range of plasma β , we calculate for MSE:

- Wavenumber k_x via magnetosonic dispersion relation $\frac{\overline{f}_{\pm}^{\text{w}}}{2}$
- Displacement amplitudes for standing wave solutions (numerical solution)
- Surface wave perturbations from displacement:

$$\frac{\delta n}{n_0} = \frac{\delta p}{p_0} = -\nabla \cdot \boldsymbol{\xi}$$
$$\delta B_{\parallel} / B_0 = -\nabla \cdot \boldsymbol{\xi}_{\perp}$$

Transition occurs at
$$\beta_{\text{crit}} = 2\left\{\gamma\left[\left(\frac{\omega_A}{\omega}\right)^2 - 1\right]\right\}^{-1}$$

- $\beta < \beta_{crit}$ plasma & field remain correlated
- $\beta > \beta_{crit}$ plasma & field become **anticorrelated**
- $\beta \gg 1$ plasma becomes **incompressible**

Reversal due to interference pattern in parallel direction

Imperial College London Inhomogeneous Plasma

In cold ($\beta = 0$) plasma box model magnetosphere with background density gradient, we calculate:

- MSE displacement amplitudes using WKB
- Surface wave perturbations, which now include both **compression** and **advection** effects:

$$\delta n = -n_0 \nabla \cdot \boldsymbol{\xi} - \boldsymbol{\xi} \cdot \nabla n_0$$

$$\delta B_{\parallel} = -B_0 \nabla \cdot \boldsymbol{\xi}_{\perp} - [(\boldsymbol{\xi}_{\perp} \cdot \nabla) \boldsymbol{B}_0]_{\parallel}$$

Advection of non-unform plasma by wave becomes more important than inherent wave compression for large density gradients Leads to anticorrelation of field and density

Reversal due to advection of non-uniform plasma

Imperial College London High-Res Global MHD simulation

XGSM [RF]

Both effects discussed important in different regions of system

Imperial College London Conclusions

Re-evaluated the magnetic field – plasma correlation test for magnetosonic waves

Strictly valid only for:

- Propagating plane wave
- Real wavenumbers
- Infinite uniform plasma

Often not true in the magnetosphere

Examples: fast mode magnetopause surface waves have **anticorrelated** plasma & fields for:

Parallel standing structure

Due to interference pattern of displacement along field above β_{crit}

Non-uniform background plasma

Due to wave's advection of plasma with different background dominating over compression for large gradients

Demonstrated theoretically and in a global simulation

m.archer10@imperial.ac.uk