Comparison of a rotational sensor and an array on Piton de la Fournaise volcano, La Réunion

Nele I. K. Vesely¹, Eva P. S. Eibl¹, Valérie Ferrazzini^{2,3}, and Joachim Wassermann⁴

methods

results

¹ Institute of Geosciences, University of Potsdam, Potsdam, Germany (vesely1@uni-potsdam.de)

² Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France

³ Observatoire volcanologique du Piton de la Fournaise, Institut de physique du globe de Paris, La Plaine des Câfres, Réunion

⁴ Department of Earth and Environmental Sciences, Ludwig-Maximilians-University of Munich, Munich, Germany

Overview

Piton de la Fournaise volcano

- recently 1-2 eruptions per year
- pre-eruptive signals: seismic swarm, tremor

Installation and methods

- rotational sensor, array (8 seismometers)
- ADR, SNR, BAZ for rockfall, local + summit EQ

Results

- array BAZ good for close & stronger events
- rotational sensor rockfall BAZ possibly true

Methods

Array derived rotation (ADR)

- **displacement relation** between neighboring points assuming infinitesimal deformation to obtain rotation (Cochard et al. 2006, Spudich et al. 1995)
- rotation approximated by solving sampling points' linear equations; finite difference approximation by array stations (G) assuming uniformity of the strain tensor over array extent (Spudich et al. 2008, Suryanto 2006)

$$\mathbf{G} = \begin{bmatrix} u_{r,r} & u_{r,t} & u_{r,z} \\ u_{t,r} & u_{t,t} & u_{t,z} \\ -u_{r,z} & -u_{t,z} & -\eta(u_{r,r} + u_{t,t}) \end{bmatrix} \qquad \qquad \begin{bmatrix} \omega_r \\ \omega_t \\ \omega_z \end{bmatrix} = \begin{bmatrix} u_{z,t} \\ -u_{z,r} \\ -\frac{1}{2}(u_{r,t} - u_{t,r}) \end{bmatrix}$$
Donner et al. 2017

frequency (f) range limited by array aperture (h)

 here: 1 - 3.5Hz from 225m distance of 3 array stations and ground heterogeneities

$$\frac{0.00238 \cdot c}{h} < f < \frac{0.25 \cdot c}{h}$$
 Donner et al. 2017

- Theoretical background:
 - calculation of averaged SNR as the sum of the root mean square (RMS) of all components' Signal (S) and divide by sum of RMS Noise (N)

$$SNR = \frac{\sqrt{\frac{1}{n}\sum_{i=0}^{n}S_{ei}^{2} + S_{ni}^{2} + S_{zi}^{2}}}{\sqrt{\frac{1}{n}\sum_{i=0}^{n}N_{ei}^{2} + N_{ni}^{2} + N_{zi}^{2}}}$$

- Configuration here:
 - RMS of two 10s-time windows before and during the event
 - gap of 5s between the signal and noise windows to avoid overlap

Eibl et al. 2022

Backazimuth (BAZ) – seismic array

- Theoretical background:
 - Fast Fourier Transform of real input
 - computing covariances of signal at different array stations
 - creating slowness maps
 - calculating BAZ from slowness map
- Output:
 - BAZ
 - slowness
 - power (real, absolute)
 - semblance
- obspy code from Van Driel & Bayreuther 2010

← main slide BAZ — horizontal components of rotational sensor

- Theoretical background:
 - rotational sensor horizontal components for orthogonal distance regression
 - ambiguity corrected with co-located seismometer
 - assumption of only one source and planar incoming wavefield

$$\omega_x = \frac{1}{2} Ak \sin \phi \sin (\omega t - \mathbf{k} \cdot \mathbf{r} + \varphi),$$

$$\omega_y = -\frac{1}{2} Ak \cos \phi \sin (\omega t - \mathbf{k} \cdot \mathbf{r} + \varphi),$$

$$\omega_z = 0.$$

Sollberger et al. 2018

- Output: BAZ, standard error
- Configuration here: 1s sliding windows, overlap of 10%
- code from Wassermann et al. 2016 & Wassermann et al. 2020

\leftarrow main slide BAZ – 6C: vertical component of rotational sensor

- Theoretical background:
 - North and East seismometer components rotated around possible BAZ values
 - correlation of transverse and vertical rotation from rotational sensor
 - BAZ of highest correlation extracted
 - phase velocities estimated from amplitude ratios

$$\frac{a_T}{\dot{\omega}_z} = \frac{-k^2 c^2 A \sin(kx - kct)}{\frac{1}{2}k^2 c A \sin(kx - kct)} = -2c$$

Hadziioannou et al. 2012

- Output: BAZ, phase velocities
- Configuration: 1s sliding windows
- code from Hadziioannou et al. 2012

Results for events

 \leftarrow main slide

Spectrogram: Rockfall event 25.11.2022

Spectrogram: Volcsummit 02.12.2022

← main slide

Spectrogram: Local event 30.12.2022

← main slide

SNR: Rockfall event 25.11.2022

← main slide

SNR: Volcsummit event 02.12.2022

SNR: Local event 30.12.2022

ADR: Rockfall event 25.11.2022

ADR: Volcsummit event 02.12.2022

ADR: Local event 30.12.2022

Back azimuth array

ROCKFALL: 2-5Hz


```
\leftarrow main slide
```

Back azimuth horizontal components

1e-7 a 4 Rotation rate E [rad/s] -4---- sliding time window 1e-7 b 6 Rockfall event Rotation rate N [rad/s] 2 25.11.2022 Distance to CS0: 6.9km -6360 expected BAZ = 25.6° d 145.0° -----... ambiguity 90 60 30 00:04:18 00:04:20 00:04:28 00:04:30 00:04:22 00:04:24 00:04:26 00:04:32 2022-11-25

Back azimuth 6C method

Back azimuth array

Back azimuth horizontal components

Volcsummit event 02.12.2022 Distance to CS0: 3.5km

Back azimuth 6C method

Back azimuth array

LOCAL: 2-10Hz

← results

Back azimuth horizontal components

Local event 30.12.2022 Distance to CS0: 12.1km

CS0:

Back azimuth 6C method

Outlook

- stronger, closer events seem to work better
- more events needed for comparison, generalization of results
- BAZ influenced by site heterogeneity, sensitivity to noise
- further comparison with wind to understand noise

Aim: analysis of eruption tremor types 0.5 to 5Hz

Appendix: Array response

Appendix: Array responses as slowness maps

