Leaf transpiration compared with tree stem sap flux and water usage of

old growth Quercus robur under elevated CO2

Susan Quick SEQ616@student.bham.ac.uk, Giulio Curioni, Stefan Krause, A. Rob. MacKenzie

BIFoR FACE, UKeCO22017-2026Baseline 2015/16

- Free-Air Carbon-dioxide Enrichment (FACE)
- 3 no-infrastructure ambient-air (natural/ ghost arrays)
- 3 ambient-air infrastructure FACE rings
- 3 FACE treatments of +150 ppmv CO₂

https://www.birmingham.ac.uk/research/bifor/face/index.aspx

Acknowledgements: BIFoR FACE Operations Team and colleagues.

Leaf transpiration measurements - Method

Canopy Access System (CAS) used to access top canopy of selected oaks throughout the treatment season April to October using:

Infrared thermometer -Leaf temperature

Porometer benefits:

- Short time per measurement (30s)
- Lightweight

Toro et al (2019)

Porometer limitations:

- RH >80%
- Large differences in leaf and air temperatures
- No auto capture of environmental factors

Porometer stomatal conductance

Infra-red gas analyzer (IRGA) limitations: g_s in the enclosed chamber

may be much reduced under high VPD Longer measurement time

1. Data visualization of stomatal conductance (g_s) 2019, 2020

Data visualisation :

Stomatal conductance peaks around midday

Light levels, air temperature and relative humidity in top canopy vary widely giving a range of results

Cut twig measurement mostly lower than in-situ

Outdoor Lab notes: We cannot control the natural environment in this FACE experiment, only the eCO_2 .

UNIVERSITY^{OF} BIRMINGHAM

2. Data visualization of stomatal conductance (q_s) 2019-2021

Annual and season variation

Stomatal conductance max- min range similar for infrastructure treatments $(eCO_2 \text{ and } aCO_2)$

Highest stomatal conductance during months of July (2021), August (2019) and September (2019, 2020)

600

(1-s 2-u lound) sg

8

Outdoor Lab note 2: The cut twigs different experience light levels and air temperature/ RH.

3.Leaf temperature treatment comparisons – example 2021

Is this an example of thermoregulation? Further data analysis & air v. leaf temp comparisons for data 2019- 2021 for oaks & other species ...

UNIVERSITY OF BIRMINGHAM

Annual and season variation

Leaf temperature during the middle of the day does not vary widely across the treatment season April to October (example 2021). On a daily basis it increases with time of day during no precipitation periods.

Values are similar for all treatments (eCO_2 , aCO_2 and no infrastructure – ambient air (ghosts)) circa 9 to 35 degrees C) peaking in July for 2021.

N.B. no August 2021 measurements

4. Stomatal conductance in mores detail and tree sap flux/ water usage comparisons

Quick et al. (in prep)

Recap – Tree water usage (TWU) treatment comparisons 2019 to 2021

Annual / seasonal whole tree water usage / tree transpiration

Stomatal conductance / leaf transpiration?

Canopy density, leaf number, leaf temperature, incident radiation and VPD will vary by season and year across all trees.

Tree water usage -normalised by tree radius

Quick et al. (in prep)

UNIVERSITY OF BIRMINGHAM

Leaf transpiration calculations from stomatal conductance g_s .

Calculation 1

Leaf transpiration [E] = stomatal conductance $(g_s) \times differential$ molecular water vapour $(C_{VS} - C_{VA})$

 g_s total conductance of water from inside the leaf into the ambient air $C_{\rm VS}$ intercellular water vapour mole fraction $C_{\rm VA}$ ambient (in air) water vapour mole fraction

Calculation 2

Leaf transpiration [E] = g_s * VPD_L

Leaf vapour pressure deficit (VPD_L) = LSVP – (AVSP * RH /100)

AVSP air saturated vapour pressure LSVP leaf saturated vapour pressure RH is relative humidity in %

UNIVERSITY OF BIRMINGHAM

NEXT STEPS

Further data analysis & transpiration calcs. in progress from data 2019-2021 for oaks & other species. Refs. Keenan et al. (2013), Meter Group (metergroup.com) (2023)

FACE Met Towers Measurements:

• *RH, air_temp*

From which we calculate SVP(at air temp), AVP: (i.e. saturated and actual air vapour pressure)

Other measurements:

- *T_L* leaf temperature (using an infrared thermometer IRT)
- *T_a* air temperature (measured at top canopy each INF array)

Quick et al. (in prep)

Q1: How does elevated CO₂ influence daily leaf level transpiration?

We explored variation of stomatal conductance and leaf temperature across the eCO_2 treatment season – the diurnal cycles imply a likely effect of eCO_2 on stomatal conductance measured by porometry.

We will now do leaf transpiration calculations and analysis using leaf VPD to make scientific correlative comparisons between treatments.

'For DAF (*deciduous trees*) we found...no effect (of leaf-air VPD)... on the response of g_s (to eCO ₂)' *Gardner, A. et al* (2023) New *Phytologist* 'Stomatal responses are similar whether leaf water status is altered via evaporative demand (a) or water supply (b)...' Buckley, T. N. (2016) Plant, Cell & Environment

Quick et al. (in prep)

Q2: Is peak daily leaf transpiration synchronised between oak trees and with stem sap flux dynamics?

We explored our 2019-2021 sap flux and porometry data:

We conclude that... calculating whole tree sap flux from field sap flow presents a better way of averaging the diurnal, seasonal and annual dynamics of canopy level stomatal conductance compared with labour intensive field leaf measurements

'For DAF (*deciduous trees*) we found...no effect (of leaf-air VPD)... on the response of g_s (to eCO 2)' *Gardner, A. et al (2023) New Phytologist* 'Stomatal responses are similar whether leaf water status is altered via evaporative demand (a) or water supply (b)...' Buckley, T. N. (2016) Plant, Cell & Environment Leaf transpiration compared with tree stem sap flux and water usage of

old growth Quercus robur under elevated CO2

@SEQ616 Susan Quick <u>SEQ616@student.bham.ac.uk</u>, Giulio Curioni, Stefan Krause, A. Rob. MacKenzie

References.

Buckley, T. N.: Stomatal responses to humidity: has the 'black box' finally been opened?, 39, 482–484, https://doi.org/https://doi.org/10.1111/pce.12651, 2016.

Gardner, A., Jiang, M., Ellsworth, D. S., MacKenzie, A. R., Pritchard, J., Bader, M. K.-F., Barton, C. V. M., Bernacchi, C., Calfapietra, C., Crous, K. Y., Dusenge, M. E., Gimeno, T. E., Hall, M., Lamba, S., Leuzinger, S., Uddling, J., Warren, J., Wallin, G., and Medlyn, B. E.: Optimal stomatal theory predicts CO2 responses of stomatal conductance in both gymnosperm and angiosperm trees, New Phytol., 237, 1229–1241, https://doi.org/https://doi.org/10.1111/nph.18618, 2023.

Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D.: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499, 324–327, https://doi.org/10.1038/nature12291, 2013.

Meter Group , how-to-measure-leaf-transpiration.pdf, downloaded from metergroup.com (April 2023)

Toro, G., Flexas, J., and Escalona, J. M.: Contrasting leaf porometer and infra-red gas analyser methodologies: an old paradigm about the stomatal conductance measurement, Theor. Exp. Plant Physiol., 31, 483–492, https://doi.org/10.1007/s40626-019-00161-x, 2019.

Thank you for reading my supplement. Questions welcomed by email or at EGU23.

UNIVERSITY^{OF} BIRMINGHAM

Acknowledgements: BIFoR FACE Operations Team, arborists and colleagues.

Photo by Willbee Films